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Abstract. Despite the great success of machine learning, its application in climate dynamics has not been well
developed. One concern might be how well the trained neural networks could learn a dynamical system and
what will be the potential application of this kind of learning. In this paper, three machine-learning methods
are used: reservoir computer (RC), backpropagation-based (BP) artificial neural network, and long short-term
memory (LSTM) neural network. It shows that the coupling relations or dynamics among variables in linear
or nonlinear systems can be inferred by RC and LSTM, which can be further applied to reconstruct one time
series from the other. Specifically, we analyzed the climatic toy models to address two questions: (i) what factors
significantly influence machine-learning reconstruction and (ii) how do we select suitable explanatory variables
for machine-learning reconstruction. The results reveal that both linear and nonlinear coupling relations between
variables do influence the reconstruction quality of machine learning. If there is a strong linear coupling between
two variables, then the reconstruction can be bidirectional, and both of these two variables can be an explanatory
variable for reconstructing the other. When the linear coupling among variables is absent but with the significant
nonlinear coupling, the machine-learning reconstruction between two variables is direction dependent, and it
may be only unidirectional. Then the convergent cross mapping (CCM) causality index is proposed to determine
which variable can be taken as the reconstructed one and which as the explanatory variable. In a real-world
example, the Pearson correlation between the average tropical surface air temperature (TSAT) and the average
Northern Hemisphere SAT (NHSAT) is weak (0.08), but the CCM index of NHSAT cross mapped with TSAT is
large (0.70). And this indicates that TSAT can be well reconstructed from NHSAT through machine learning.

All results shown in this study could provide insights into machine-learning approaches for paleoclimate
reconstruction, parameterization scheme, and prediction in related climate research.

Highlights:
i The coupling dynamics learned by machine learning can be used to reconstruct time series.

ii Reconstruction quality is direction dependent and variable dependent for nonlinear systems.

iii The CCM index is a potential indicator to choose reconstructed and explanatory variables.

iv The tropical average SAT can be well reconstructed from the average Northern Hemisphere SAT.
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1 Introduction

Applying neural-network-based machine learning in climate
fields has attracted great attention (Reichstein et al., 2019).
A machine-learning approach can be applied to downscaling
and data mining analyses (Mattingly et al., 2016; Racah et
al., 2017) and can also be used to predict the time series of
climate variables, such as temperature, humidity, runoff, and
air pollution (Zaytar and Amrani, 2016; Biancofiore et al.,
2017; Kratzert et al., 2019; Feng et al., 2019). Besides, pre-
vious studies found that some temporal dynamics of the un-
derlying complex systems can be encoded in these climatic
time series. For example, chaos is a crucial property of cli-
matic time series (Lorenz, 1963; Patil et al., 2001). Thus,
there is significant concern regarding the ability of machine-
learning algorithms to reconstruct the temporal dynamics of
the underlying complex systems (Pathak et al., 2017; Du et
al., 2017; Lu et al., 2018; Carroll, 2018; Watson, 2019). The
chaotic attractors in the Lorenz system and the Rossler sys-
tem can be reconstructed by machine learning (Pathak et al.,
2017; Lu et al., 2018; Carroll, 2018), and the Poincaré return
map and Lyapunov exponent of the attractor can be recovered
as well (Pathak et al., 2017; Lu et al., 2017). These results are
important to deeply understand the applicability of machine
learning in climate fields.

Though applying machine learning to climate fields has
been attracting much attention, there are still open ques-
tions about what can be learned by machine learning dur-
ing the training process and what is the key factor deter-
mining the performance of the machine-learning approach
to climatic time series. These issues are crucial for investi-
gating why machine learning cannot perform well with some
datasets and how to improve the performance for them. One
possible key factor is the coupling between different vari-
ables. Because different climate variables are coupled with
one another in different ways (Donner and Large, 2008), the
coupled variables will share their information content with
one another through the information transfer (Takens, 1981;
Schreiber, 2000; Sugihara et al., 2012). Furthermore, a cou-
pling often results in the fact that the observational time se-
ries are statistically correlated (Brown, 1994). Correlation is
a crucial property for the climate system, and it often influ-
ences the analysis of climatic time series. The Pearson coef-
ficient is often used to detect the correlation, but it can only
detect the linear correlation. It is known that when the Pear-
son correlation coefficient is weak, most of the tasks based
on traditional regression methods will fail at dealing with
the climatic data, such as fitting, reconstruction, and predic-
tion (Brown, 1994; Sugihara et al., 2012; Emile-Geay and
Tingley, 2016). However, a weak linear correlation does not
mean that there is no coupling relation between the variables.
Previous studies (Sugihara et al., 2012; Emile-Geay and Tin-
gley, 2016) have suggested that although the linear correla-
tion of two variables is potentially absent, it might be nonlin-
early coupled. For instance, the linear cross-correlations of

sea air temperature series observed in different tropical ar-
eas are overall weak, but they can be strong locally and vary
with time (Ludescher et al., 2014); such a time-varying cor-
relation is an indicator of nonlinear correlation (Sugihara et
al., 2012). These nonlinear correlations of the sea air tem-
perature series have been found to be conductive to the bet-
ter El Niño predictions (Ludescher et al., 2014; Conti et al.,
2017). The linear correlations between the ENSO/PDO in-
dex (El Niño–Southern Oscillation and Pacific Decadal Os-
cillation) and some proxy variables are also overall weak, but
nonlinear coupling relations between them can be detected
and contribute greatly to reconstructing longer paleoclimate
time series (Mukhin et al., 2018). These studies indicate that
nonlinear coupling relations would contribute to the better
analysis, reconstruction, and prediction (Hsieh et al., 2006;
Donner, 2012; Schurer et al., 2013; Badin et al., 2014; Dró-
tos et al., 2015; Van Nes et al., 2015; Comeau et al., 2017;
Vannitsem and Ekelmans, 2018). Accordingly, when apply-
ing machine learning to climatic series, is it necessary to pay
attention to the linear or nonlinear relationships induced by
the physical couplings? This question is what we want to ad-
dress in this study.

In a recent study (Lu et al., 2017), a machine-learning
method called reservoir computer was used to reconstruct
the unmeasured time series in the Lorenz 63 model (Lorenz,
1963). It was found that the Z variable can be well recon-
structed from the X variable by reservoir computer, but it
failed to reconstructX from Z. Lu et al. (2017) demonstrated
that the nonlinear coupling dynamic between X and Z was
responsible for this asymmetry in the reconstruction. This
could be explained by the nonlinear observability in con-
trol theory (Hermann and Krener, 1977; Lu et al., 2017):
for the Lorenz 63 equation, both sets, (X(t),Y (t),Z(t)) and
(−X(t),−Y (t),Z(t)), could be its solutions. Therefore, when
Z(t) was acting as an observer, it cannot distinguish X(t)
from −X(t), and the information content of X was incom-
plete for Z(t), which determined that X cannot be recon-
structed by machine learning. The nonlinear observability for
a nonlinear system with a known equation can be easily an-
alyzed (Hermann and Krener, 1977; Schumann-Bischoff et
al., 2016; Lu et al., 2017). But for the observational data
from a complex system without any explicit equation, the
nonlinear observability is hard to infer, and few studies ever
investigated this question. Furthermore, does such asymmet-
ric nonlinear observability in the reconstruction also exist in
nonlinearly coupled climatic time series? This is still an open
question.

In this paper, we apply machine-learning approaches to
learn the coupling relation between climatic time series
(training period) and then reconstruct the series (testing pe-
riod). Specifically, we aim to make progress on how the
machine-learning approach is influenced by the physical cou-
plings of climatic series, and the abovementioned questions
are addressed. There are several variants of machine-learning
methods (Reichstein et al., 2019), and recent studies (Lu
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et al., 2017; Reichstein et al., 2019; Chattopadhyay et al.,
2020) suggest that three of them are more applicable to se-
quential data (like time series): reservoir computer (RC),
backpropagation-based (BP) artificial neural network, and
long short-term memory (LSTM) neural network. Here we
adopt these three methods to carry out our study and provide
a performance comparison among them. We first investigate
their performance dependence on different coupling dynam-
ics by analyzing a hierarchy of climatic conceptual models.
Then we use a novel method to select explanatory variables
for machine learning, and this can further detect the nonlinear
observability (Hermann and Krener, 1977; Lu et al., 2017)
for a complex system without any known explicit equations.

Finally, we will discuss a real-world example from the cli-
mate system. It is known that there exist atmospheric energy
transportation systems between the tropics and the Northern
Hemisphere, and this can result in coupling between the cli-
mate systems in these two regions (Farneti and Vallis, 2013).
Due to the underlying complicated processes, it is difficult
to use a set of formulas to cover the coupling relation be-
tween the average tropical surface air temperature (TSAT)
series and the Northern Hemisphere surface air temperature
(NHSAT) series. We employ machine-learning methods to
investigate whether the NHSAT time series can be recon-
structed from the TSAT time series and whether the TSAT
time series can also be reconstructed from the NHSAT time
series. In this way, the conclusions from our model simula-
tions can be further tested and generalized.

Our paper is organized as follows. In Sect. 2, the methods
for reconstructing time series and detecting coupling relation
are introduced. The analyzed data and climate conceptual
models are described in Sect. 3. In Sect. 4, we will investigate
the association between the coupling relation and reconstruc-
tion quality by machine learning and present an application
to real-world climate series. Finally the summary is given in
Sect. 5.

2 Methods

2.1 Learning coupling relations and reconstructing
coupled time series

Firstly, we introduce our workflow for learning couplings of
dynamical systems by machine learning and reconstructing
the coupled time series. The total time series can be divided
into two parts: the training series (time lasting denoted as t)
and the testing series (time lasting denoted as t ′). For the sys-
tems of toy models, the coupling relation or dynamics is sta-
ble and unchanged with time; i.e., there is the stable coupling
or dynamic relation b(t)= F [a1(t), a2(t), . . . , an(t)] among
inputs a1(t), a2(t), . . . , an(t) and output b(t). If this inher-
ent coupling relation can be inferred by machine learning
in the training series, the inferred coupling relation should
be reflected by machine learning in the testing series. There-

fore, the workflow of our study can be summarized as follows
(Fig. 1):

i During the training period, a1(t), a2(t), . . . ,an(t) and
b(t) are input into the machine-learning frameworks
to learn the coupling or dynamic relation b(t)=
F [a1(t), a2(t), . . . ,an(t)]. The inferred coupling re-
lation is denoted as b(t)= F̂ [a1(t), a2(t), . . . , an(t)].
Then it is tested whether this coupling relation can be
reconstructed by machine learning.

ii The second step is accomplished with the testing series
to apply the inferred coupling relation F̂ together with
only a1(t ′), a2(t ′), . . . ,an(t ′) to derive b(t ′), denoted as
b̂(t ′); b̂(t ′) is called “the reconstructed b(t ′)”, since only
a1(t ′),a2(t ′), . . . ,an(t ′) and the inferred coupling rela-
tion F̂ have been taken into account.

iii The first objective of this study is to answer the
question of whether the coupling relation b(t)=
F [a1(t),a2(t), . . . ,an(t)] can be reconstructed by ma-
chine learning, i.e., whether the inferred coupling rela-
tion F̂ can approximate the real coupling relation F .
Since we do not intend to reach an explicit formula of
the reconstructed coupling relation F̂ , we will answer
this question indirectly by comparing the reconstructed
series b̂(t ′) with the original series b(t ′). If b̂(t ′)≈ b(t ′),
then it can be regarded as F̂ ≈ F , and machine learning
can indeed learn the intrinsic coupling relation among
a1(t),a2(t), . . . , an(t) and b(t).

iv If machine learning can infer the intrinsic coupling re-
lation between a1(t), a2(t), . . . ,an(t) and b(t), the in-
ferred coupling relation F̂ can be applied to recon-
struct output b(t ′) even if only a1(t ′), a2(t ′), . . . ,an(t ′)
are available.

2.2 Machine-learning methods

2.2.1 Reservoir computer

A newly developed neural network called RC (Du et al.,
2017; Lu et al., 2017; Pathak et al., 2018) has three layers:
the input layer, the reservoir layer, and the output layer (see
Fig. 2). If a(t) and b(t) denote two time series from a system,
then the following steps can be taken to estimate b(t) from
a(t).

i a(t) (a vector with length L) is input into the input layer
and reservoir layer. There are four components in these
layers: the initial reservoir state r(t) (a vector with di-
mension N , representing the N neurons), the adjacent
matrix M (size N ×N ) representing connectivity of the
N neurons, the input-to-reservoir weight matrix Win
(size N×L), and the unit matrix E (size N×N ), which
is crucial for modulating the bias in the training process
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Figure 1. Diagram illustration for reconstructing time series by machine learning. (1) The available part of the dataset {a1(t), . . . , an(t),
b(t)} is used to train the neural network. F denotes the inherent coupling relation function among the variables a1, . . . , an, and b; F̂ denotes
the inferred coupling relation by neural network. (2) The dataset {a1(t ′), a2(t ′), . . . , an(t ′)} is input into the trained neural network, and
the unknown series, b(t ′), can be reconstructed, denoted as b̂(t ′). (3) If b̂(t ′)≈ b(t ′); then, the approximation F̂ ≈ F can be derived, which
indicates that the coupling relation is well reconstructed.

(Lu et al., 2018). The elements of M and Win are ran-
domly chosen from a uniform distribution in the inter-
val [−1, 1], and we set N = 1000 here. (We have tested
that this choice yields good performance.) These com-
ponents are employed to derive output as an updated
reservoir state r∗(t):

r∗(t)= tanh[M · r(t) +Win · a(t) + E]. (1)

ii r∗(t) then transfers to the output layer that consists of
the reservoir-to-output matrix Wout. And r∗(t) will be
used to estimate the value of b̂(t) (see Eq. 2).

b̂(t)=Wout · r
∗(t) (2)

The mathematical form of Wout is defined as

Wout = arg minWout

∥∥Wout · r
∗ (t)− b(t)

∥∥+α ‖Wout‖ , (3)

and it is a trainable matrix that fits the relation between r∗(t)
and b(t) in the training process. ‖·‖ denotes the L2 norm
of a vector (L2 represents the least square method) and α is
the ridge regression coefficient, whose values are determined
after the training.

After this reservoir neural network is trained, we can use
it to estimate b(t), and the estimated value is noted as b̂(t).

2.2.2 Backpropagation-based artificial neural network

Here, the used BP neural network is a traditional neural com-
puting framework, and it has been widely used in climate
research (Watson, 2019; Reichstein et al., 2019; Chattopad-
hyay et al., 2020). There are six layers in the BP neural net-
work: the input layer has 8 neurons and four hidden layers
with 100 neurons each; the output layer has 8 neurons. In
each layer, the connectivity weights of the neurons need to
be computed during the training process, where the back-
propagation optimization with the complicated gradient de-
cent algorithm is used (Dueben and Bauer, 2018). A crucial
difference between the BP and the RC neural networks is as
follows: unlike RC, all neuron states of the BP neural net-
work are independent of the temporal variation of time series
(Reichstein et al., 2019; Chattopadhyay et al., 2020), while
the neurons of RC can track temporal evolution (such as the
neuron state r(t) in Fig. 2) (Chattopadhyay et al., 2020). If
a(t) and b(t) are two time series of a system, we can recon-
struct b(t) from a(t) through the BP neural network.

2.2.3 Long short-term memory neural network

The LSTM neural network is an improved recurrent neural
network to deal with time series (Reichstein et al., 2019;
Chattopadhyay et al., 2020). As Fig. 3 shows, LSTM has a
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Figure 2. Schematic of the RC neural network: the three layers are the input layer, reservoir layer, and output layer. The input layer consists
of a matrix Win. The reservoir layer consists of N reservoir neurons whose connectivity is through the adjacent matrix M, and r(t) denotes
the activation of neurons. The output layer consists of a matrix Wout; a(t) and b̂ (t) denote the input and output time series.

Figure 3. Schematic of the LSTM architecture. LSTM has a mem-
ory cell, an input gate, an output gate, and a forget gate to control
the information of the previous time to flow into the neural network.

series of components: a memory cell, an input gate, an out-
put gate, and a forget gate. When a time series a(t) is in-
put to train this neural network, the information of a(t) will
flow through all these components, and then the parameters
at different components will be computed for fitting the re-
lation between a(t) and b(t). The governing equations for
the LSTM architecture are shown in the appendix. After the
training is accomplished, a(t) can be used to reconstruct b(t)
by this neural network.

The crucial improvement of LSTM on the traditional re-
current neural network (Reichstein et al., 2019) is that LSTM
has a forget gate which controls the information of the pre-
vious time to flow into the neural network. This will enable
the neuron states of LSTM to track the temporal evolution
of time series (Kratzert et al., 2019; Reichstein et al., 2019;
Chattopadhyay et al., 2020), and this is the crucial difference
between the LSTM and the BP neural networks.

Here, we also test the LSTM neural network without the
forget gate and call it LSTM∗. This means that the informa-
tion of the previous time cannot flow into the LSTM∗ neural
network, which does not have any memory of the past in-
formation. We will compare the performance of LSTM with
that of LSTM∗, so the role of the neural network memory for
the previous information can be presented.

2.3 Evaluation of reconstruction quality

The root-mean-square error (RMSE) of residuals is used
here to evaluate the quality of reconstruction (Hyndman and
Koehler, 2006). The residual represents the difference be-
tween the real series b(t ′) and the reconstructed series b̂(t ′),
and it is defined as

RMSE=

√
1
k

∑
t

[b(t ′)− b̂(t ′)]2. (4)

In order to fairly compare the errors of reconstructing differ-
ent processes with different variability and units (Hyndman
and Koehler, 2006; Pennekamp et al., 2019; Huang and Fu,
2019), we normalize the RMSE as

nRMSE=
RMSE

max[b(t ′)] −min[b(t ′)]
. (5)

2.4 Coupling detection

2.4.1 Linear correlation

As mentioned in the introduction, the linear Pearson corre-
lation is a commonly used method to quantify the linear re-
lationship between two observational variables. The Pearson
correlation between two series, a(t) and b(t), is defined as

corr.=
mean[(a− a) · (b− b)]

SD(a) ·SD(b)
. (6)

The terms “mean” and “SD” denote the average and stan-
dard deviation for the series, respectively.

2.4.2 Convergent cross mapping

To measure the nonlinear coupling relation between two ob-
servational variables, we choose the convergent cross map-
ping (CCM) method that has been demonstrated to be useful
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for many complex nonlinear systems (Sugihara et al., 2012;
Tsonis et al., 2018; Zhang et al., 2019). Considering a(t) and
b(t) as two observational time series, we begin with the cross
mapping (Sugihara et al., 2012) from a(t) to b(t) through the
following steps:

i Embedding a(t) (with length L) into the phase
space is performed with a vector Ma(ti)=
{ati , ati−τ , . . ., ati − (m−1)τ } (ti represents a histori-
cal moment in the observations), where embedding
dimension (m) and time delay (τ ) can be determined
through the false nearest-neighbor algorithm (Hegger
and Kantz, 1999).

ii Estimating the weight parameter wi denotes the associ-
ated weight between two vectors Ma(t) and Ma(ti) (t
denotes the excepted time in this cross mapping), and it
is defined as

wi =
ui∑m+1
i=1 ui

, (7)

ui = exp
d [Ma(t),Ma(ti)]
d [Ma(t),Ma(t1)]

, (8)

where d [Ma(t),Ma(ti)] denotes the Euler distance be-
tween vectors Ma(t) and Ma(ti). The nearest neighbor
to Ma(t) generally corresponds to the largest weight.

iii Cross mapping the value of b(t) is performed through

b̂ (t) =
∑m+1

i=1
wib (ti) . (9)

b̂ (t) denotes the estimated value of b(t) with this phase-
space cross mapping. Then, we will evaluate the cross
mapping skill (Sugihara et al., 2012; Tsonis et al., 2018)
as:

ρa→b = corr. [b(t), b̂(t)]. (10)

The cross mapping skill from b to a is also measured ac-
cording to the above steps (marked as ρb→a). Sugihara et
al. (2012) and Tsonis et al. (2018) defined the causal infer-
ence according to ρa→b and ρb→a as (i) if ρa→b is conver-
gent when L is increased and ρa→b is of high magnitude,
then b is suggested to be a causation of a. (ii) Besides, if
ρb→a is also convergent when L is increased and is of high
magnitude, then the causal relationship between a and b is
bidirectional (a and b cause each other). In our study, all val-
ues of the CCM indices are measured when they are conver-
gent with the data length (Tsonis et al., 2018).

According to previous studies (Sugihara et al., 2012; Ye et
al., 2015), the CCM index is related to the ability of using
one variable to reconstruct another variable: if b influences
a but a does not influence b, the information content of b
can be encoded in a (through the information transfer from
b to a), but the information content of a is not encoded in b

(there exists no information transfer from a to b). In this way,
the time series of b can be reconstructed from the records of
a. For the CCM index (ρa→b), its magnitude represents how
much information content of b is encoded in the records of a.
Therefore, the high magnitude of ρa→b means that b causes
a, and we can get good reconstruction from a to b. In this
paper, we will test the association between the CCM index
and the reconstruction performance of machine learning.

3 Data

3.1 Time series from conceptual climate models

For a linearly coupled model, the autoregressive fractionally
integrated moving average (ARFIMA) model (Granger and
Joyeux, 1980) maps a Gaussian white noise ε(t) into a cor-
related sequence x(t) (Eq. 11), which can simulate the linear
dynamics of an ocean–atmosphere coupled system (Hassel-
mann, 1976; Franzke, 2012; Massah and Kantz, 2016; Cox
et al., 2018).

ε(t)
ARFIMA(p, d, q)
−−−−−−−−−−→ x(t) (11)

In this model, d is a fractional differencing parameter, and p
and q are the orders of the autoregressive and moving aver-
age components, respectively. Here, the parameters are set
as p = 3, d = 0.2, and q = 3. Hence x(t) is a time series
composed of three components: the third-order autoregres-
sive process whose coefficients are 0.6, 0.2, and 0.1; the frac-
tional differencing process with Hurst exponent 0.7; and the
third-order moving-average process whose coefficients are
0.3, 0.2, and 0.1 (Granger and Joyeux, 1980). These two time
series, ε(t) and x(t), are used for the reconstruction analysis.

For a nonlinearly coupled model, the Lorenz 63 chaotic
system (Lorenz, 1963) depicts the nonlinear coupling rela-
tion in a low-dimensional chaotic system. The system reads
as

dx
dt
=−σ (x− y),

dy
dt
= µx− xz− y,

dz
dt
= xy−Bz. (12)

When the parameters are fixed at (σ , µ, B)= (10, 28, 8/3),
the state in the system is chaotic. We employed the fourth-
order Runge–Kutta integrator to acquire the series output
from this Lorenz 63 system. The time step was taken as 0.01.
The time series X(t) and Z(t) are used for the reconstruction
analysis.

For a high-dimensional model, the two-layer Lorenz 96
model (Lorenz, 1996) is a high-dimensional chaotic system,
and it is commonly used to mimic midlatitude atmospheric
dynamics (Chorin and Lu, 2015; Hu and Franzke, 2017; Vis-
sio and Lucarini, 2018; Chen and Kalnay, 2019; Watson,
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Figure 4. (a) The x(t) time series (blue) and the ε(t) time series (black) of the ARFIMA (3, 0.2,3) model. White lines denote the results of a
50-step running average. (b) Comparison of power spectra between x(t) and ε(t). (c) Comparison of the reconstructed time series of x(t) by
RC, LSTM, LSTM∗, and BP (red dots), and blue lines denote the real x(t). (d) Comparison of the reconstructed time series of ε(t) through
RC, LSTM, LSTM∗, and BP (red dots), and black lines denote the real ε(t).

2019). It reads as

dXk
dt
=Xk−1(Xk+1−Xk−2)−Xk +F −

h1

J

J∑
j=1

Yj, k,

dYk, j
dt
=

1
θ
[Yk, j+1(Yk, j−1−Yk, j+2)−Yk, j +h2Xk]. (13)

In the first layer of the Lorenz 96 system, there are 18 vari-
ables marked as Xk (k is an integer ranging from 1 to 18),
and each Xk is coupled with Yk, j (Yk, j is from the second
layer). The parameters are set as fellows: J = 20, h1 = 1,
h2 = 1, and F = 10. The parameter θ can alter the cou-
pling strength: when θ is decreased, the coupling strength
between Xk and Yk, j will be enhanced. The fourth-order
Runge–Kutta integrator and periodic boundary condition are
adopted (i.e., X0 =XK and XK+1 =X1; Yk, 0 = Yk−1, J and
Yk, J+1 = Yk+1, 1), and the integral time step is taken as 0.05.
The time seriesX1(t) and Y1, 1(t) are used for the reconstruc-
tion analysis.

3.2 Real-world climatic time series

TSAT, NHSAT, and the Nino 3.4 index are chosen as
the example from real-world climatic time series used
for reconstruction analysis. The original data were ob-
tained from the National Centers for Environmental Predic-
tion (NCEP) (https://www.esrl.noaa.gov/psd/data/gridded/
data.ncep.reanalysis2.html, last access: 16 September 2020)
and KNMI Climate Explorer (http://climexp.knmi.nl, last ac-
cess: 16 September 2020). The series of TSAT and NHSAT
were obtained from the regional average of gridded daily
data in NCEP Reanalysis 2. The selected spatial range is
20◦ N–20◦ S for the tropics and 20–90◦ N for the Northern
Hemisphere. The selected temporal range is from 1 Septem-
ber 1981 to 31 December 2018.

For the training and testing datasets before analysis, all the
used time series are standardized to take zero mean and unit
variance so that any possible impact of mean and variance on
the statistical analysis is avoided (Brown, 1994; Hyndman
and Koehler, 2006; Chattopadhyay et al., 2020). The total
series were divided into two parts: 60 % of the time series for
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training the neural network and 40 % for the testing series.
Specific data lengths of the training series and testing series
will also be listed in the results section.

4 Results

4.1 Coupling relation learning

4.1.1 Linear coupling relation and machine learning

We first consider the simplest case: the linear coupling rela-
tion between two variables. Here, two time series x(t) and
ε(t) in the ARFIMA (3, 0.2, 3) model are analyzed. Obvi-
ously, there are different temporal structures in x(t) and ε(t),
especially for their large-scale trends (Fig. 4a) and power
spectra (Fig. 4b). The marked difference between x(t) and
ε(t) lies in their low-frequency variations, and there are more
low-frequency and larger-scale structures in x(t) than in ε(t).
We employ neural networks (RC, LSTM, LSTM∗, and BP)
to learn the dynamics of this model (Eq. 11) through the pro-
cedure shown in Fig. 1. The training parts of ε(t) are selected
from the gray shading in Fig. 4a. RC, LSTM, LSTM∗, and
BP are trained to learn the coupling relation between x(t)
and ε(t). Then, the trained neural networks together with ε(t)
are used to reconstruct x(t). The reconstruction results and
the performance of different neural networks are presented
in Table 1. It shows that there is a strong linear correlation
(0.88) between x(t) and ε(t). This reconstruction result sug-
gests that the strong linear coupling can be well captured by
these three neural networks since all values of nRMSE are
low.

Detailed comparisons between the real and reconstructed
series are shown in Fig. 4c and d. When ε(t) is input,
the trained RC and LSTM neural networks can be applied
to accurately reconstruct x(t). When x(t) is reconstructed
from ε(t) through LSTM, the minimum of nRMSE (0.01)
is reached; all reconstructed series are nearly overlapped
with the real ones and cannot be visually differentiated (see
Fig. 4c). For RC, the reconstruction quality is also good. The
good performance of LSTM benefits from its memory func-
tion for the past information (Reichstein et al., 2019; Chat-
topadhyay et al., 2020). When the memory function of LSTM
is stopped, the reconstruction of LSTM∗ is no longer better
than that of RC (see Table 1). The reconstruction by BP is
successful in this linear system (Fig. 4), but its performance
is not as good as LSTM and RC (Table 1). This performance
difference may be due to the fact that, unlike LSTM and RC,
the neuron states of BP cannot track the temporal evolution
of a time series (Chattopadhyay et al., 2020).

4.1.2 Nonlinear coupling relation and machine learning

It is known that a strong linear correlation is useful for train-
ing neural networks and reconstructing time series. When the
linear correlation between variables is very weak, could these

Figure 5. (a) TheX time series (black) and the Z time series (blue)
of the Lorenz 63 model. (b) Comparison of the reconstructed time
series of Z (red) through RC, LSTM, and BP. Blue lines denote the
real Z(t). (c) Comparison of the reconstructed time series of X(red)
through RC, LSTM, and BP. Black lines are the real X(t).

machine-learning methods be applied to learn the underly-
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Table 1. Details of reconstructing ARFIMA (3, 0.2, 3).

Input Output Corr. Data length Neural RMSE nRMSE
(a) (b) (training / testing) network

ε(t′) x(t′) 0.88 2400/1600

RC 0.31 0.04
LSTM 0.07 0.01
LSTM∗ 0.46 0.06
BP 0.52 0.07

x(t′) ε(t′) 0.88 2400/1600

RC 0.09 0.01
LSTM 0.08 0.01
LSTM∗ 0.45 0.06
BP 0.50 0.07

Figure 6. (a) Scatter plot of x(t) and ε(t) of the ARFIMA (3, 0.2, 3) model. (b) Scatter plot of X time series and Z time series of the Lorenz
63 model.

ing coupling dynamics? To address this question, two non-
linearly coupled time series, X(t) and Z(t), in the Lorenz 63
system (Lorenz, 1963) are analyzed.

There is a very weak overall linear correlation between
variables X and Z (Pearson correlation: 0.002) in the Lorenz
63 model (Table 2), and such a weak linear correlation results
from the time-varying local correlation between variables X
andZ (see Fig. 5a). For example,X andZ are negatively cor-
related in the time interval of 0–200 but positively correlated
in 200-400. This alternation of negative and positive correla-
tion appears over the whole temporal evolutions of X(t) and
Z(t), which leads to an overall weak linear correlation. In
this case, we cannot use a feasible linear regression model
between X(t) and Z(t) to reconstruct one from the other,
since there is no such good linear dependency as found in
the ARFIMA (p, d, q) system (see Fig. 6a and b).

In a nonlinearly coupled system, it is known that the cou-
pling strength between two variables cannot be estimated by
the linear Pearson correlation (Brown, 1994; Sugihara et al.,
2012). Here, we use CCM to estimate the coupling strength
between X and Z, and it shows a high magnitude of the
CCM index: ρX→Z = 0.91. According to the CCM theory

(see Methods section), such a high magnitude of the CCM
index indicates that the information content of Z is encoded
in the time series of X. Therefore, we conjecture that when
inputting X(t) into the neural network, it is not only the in-
formation content ofX(t) but also the information content of
Z(t) that can be learned by the neural network. And then it is
possible to reconstruct Z(t) from the trained neural network.
We will test this in the following.

Figure 5b shows the results of reconstructing Z time series
through RC, LSTM, and BP (upper, middle, and lower sub-
panels, respectively). Unlike the case of a linear system, the
successful reconstruction for the time series of the Lorenz 63
system depends on the used machine-learning methods. The
series reconstructed by LSTM nearly overlaps with the real
series (Fig. 5b) and has the minimum nRMSE (0.004; see Ta-
ble 2); moreover, the RC performs quite well, with only a lit-
tle difference found at some peaks and dips (Fig. 5b). These
reconstruction results suggest that even though the linear cor-
relation is very weak, a strong nonlinear correlation will al-
low RC and LSTM to fully capture the underlying coupling
dynamics. However, BP and LSTM∗ perform poorly, and
their reconstruction results have large errors (nRMSE= 0.17
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Table 2. Details of Lorenz 63 system reconstruction.

Input (a) Output (b) Corr. ρa→b Data length Neural RMSE nRMSE
(training / testing) network

Lorenz X Lorenz Z 0.002 0.91 2400/1600

RC 0.04 0.008
LSTM 0.02 0.004
LSTM∗ 1.02 0.24
BP 0.77 0.17

Lorenz Z Lorenz X 0.002 0.03 2400/1600

RC 1.13 0.34
LSTM 1.03 0.31
LSTM∗ 1.08 0.33
BP 1.01 0.31

Table 3. Details of reconstructing the Lorenz 96 model.

Input Target Corr. ρa→b Data length Neural RMSE nRMSE
(a) (b) (training / testing) network

Y1,1 X1 −0.11 0.98 1200/800
RC 0.03 0.01
LSTM 0.34 0.05

X1 Y 1, 1 −0.11 0.61 1200/800 RC 0.35 0.06
LSTM 0.42 0.08

X2 X1 −0.06 0.37 1200/800
RC 0.69 0.13
LSTM 1.09 0.20

X1 X2 −0.06 0.25 1200/800 RC 0.95 0.17
LSTM 0.84 0.16

X2, X17, X18 X1
−0.06, −0.24, 0.37, 0.29,

1200/800
RC 0.41 0.08

0.06 0.41 LSTM 0.32 0.06

for BP, and nRMSE = 0.24 for LSTM∗). The reconstructed
series heavily depart from the real series, especially for all
peaks and dips, and the reconstructed values for each extreme
point are underestimated (Fig. 5b). This means that both BP
and LSTM∗ cannot learn the nonlinear coupling.

As mentioned in Sect. 2.2, a BP neural network does not
track the temporal evolution, since its neuron states are inde-
pendent of the temporal variation of time series. For LSTM∗,
it does not include the information of previous time. Previous
studies have revealed that the temporal evolution and mem-
ory are very important properties for a nonlinear time series
(Kantz and Schreiber, 2004; Franzke et al., 2015), and this
could not be neglected when modeling nonlinear dynamics.
These might be responsible for the fact that BP and LSTM∗

fail in dealing with this nonlinear Lorenz 63 system. Investi-
gations for the application of BP in other nonlinear relation-
ships need to be further addressed in the future.

4.2 Reconstruction quality and impact factors

From the above results, it is revealed that RC and LSTM are
able to learn both linear and nonlinear coupling relations, and
the coupled time series can be well reconstructed. In this sec-

tion, we further investigate what factors can influence the re-
construction quality.

4.2.1 Direction dependence and variable dependence

When reconstructing time series of the linear model of
Eq. (11), it can be found that the reconstruction is bidirec-
tional (see Fig. 4d and Table 1): one variable can be taken as
an explanatory variable to reconstruct another variable well;
oppositely, it can also be well reconstructed by another vari-
able. Furthermore, when the linear correlation is weak but
the nonlinear coupling is strong, will the bidirectional recon-
struction be still allowed? The answer is usually no! For ex-
ample, when comparing the reconstruction quality of recon-
structing Z(t) from X(t) (Fig. 5b) with that of reconstructing
X(t) from Z(t) (Fig. 5c), all of the used machine-learning
methods fail in reconstructing X(t) from Z(t) (large values
of nRMSE are all close to 0.3). This result is consistent with
the nonlinear observability mentioned by (Lu et al., 2017).
The reconstruction direction is no longer bidirectional in this
nonlinear system, but the reconstruction quality is direction
dependent and variable dependent.
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Figure 7. (a) The Y1,1 time series (black), X2 time series (black),
and X1 time series (blue) of the Lorenz 96 system. (b) Recon-
structed by RC; when Y1,1, X2, and the multivariate are acting as
the explanatory variables, the corresponding reconstructed X1 time
series (red) are shown, and blue lines denote the realX1 time series.
(c) Reconstructed by LSTM; when Y1,1, X2, and the multivariate
(multiple variables: X2, X17, and X18) are acting as the explana-
tory variable, the corresponding reconstructed X1 time series (red)
are shown, and blue lines denote the real X1 time series.

Therefore, we further discuss how to select the suitable
explanatory variable or the reconstruction direction. Tables
1 and 2 show that the reconstruction quality in a linear cou-
pled system highly depends on the Pearson correlation; how-
ever, it is different for a nonlinear system. For the Lorenz 63
system, the bidirectional CCM coefficients between the vari-
ablesX andZ are asymmetric (with a stronger ρX→Z = 0.91
but weaker ρZ→X = 0.03); variable Z can be well recon-
structed from variable X by machine learning, but X cannot
be reconstructed from Z (Fig. 5b and c). The CCM index can
be taken as a potential indicator to determine the explanatory
variable and reconstructed variable for this nonlinear system.
Here the asymmetric reconstruction quality results from the
asymmetric information transfer between the two nonlinearly
coupled variables (Hermann and Krener, 1977; Sugihara et
al., 2012; Lu et al., 2017). In the coupling relation between
X and Z, much more information content of Z is encoded in
X, so it performs well for reconstructing Z fromX (Lu et al.,
2017), which can be detected by the CCM index (Sugihara et
al., 2012; Tsonis et al., 2018).

4.2.2 Generalization to a high-dimensional chaotic
system

Choosing direction and variable is important for the appli-
cation of neural networks in reconstructing nonlinear time
series, but this is derived from the low-dimensional Lorenz
63 system. In this subsection, we present the results from
a high-dimensional chaotic system of the Lorenz 96 model.
Furthermore, we will investigate the association between
the CCM index and reconstruction quality in the machine-
learning frameworks.

Firstly, we use variables X1 and Y1, 1 in Eq. (13) to il-
lustrate the direction dependence in the high-dimensional
system. Details of X1 and Y1, 1 are shown in Fig. 7a, and
the Pearson correlation between X1 and Y1, 1 is weak (only
−0.11; see Table 3). In Eq. (13), the forcing from X1 to
Y1, 1 is much stronger than the forcing from Y1, 1 to X1. The
CCM index shows: ρY1, 1→X1 = 0.98 and ρX1→Y1, 1 = 0.61.
This indicates that reconstructing X1 from Y1, 1 may ob-
tain a better quality than from X1 to Y1, 1. As expected, by
means of RC, the error of reconstructing X1 from Y1, 1 is
nRMSE= 0.01; however, it is nRMSE= 0.06 in the oppo-
site direction (Table 3). The result of LSTM is similar to that
of RC in this case. Thus, direction dependence does exist in
reconstructing this high-dimensional system, and the result is
consistent with the indication of the CCM index. In this case,
performance of the reconstruction through BP and LSTM∗ is
not good and the same as analyzed in Sect. 4.2.3.

The reconstruction between X1 and X2 in the same layer
of the Lorenz 96 system is also shown. There is an asym-
metric causal relation (ρX2→X1 = 0.37 and ρX1→X2 = 0.25)
between X1 and X2, and their linear correlation is very weak
(see Table 3). The RC gives a better result of reconstructing
X1 from X2 (nRMSE= 0.13) than reconstructing X2 from
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Figure 8. Scatter plot of nRMSE values and the CCM index val-
ues. Blue and gray dashed lines are the fitted linear trends for the
scatters.

X1 (nRMSE= 0.17). LSTM also has different results for the
reconstructed X1 and X2 (Table 3), where the quality of re-
constructing from X1 to X2 (nRMSE= 0.16) is better than
reconstructing from X2 to X1 (nRMSE= 0.20). In this case,
the reconstruction quality of LSTM is worse than that of RC,
and the reconstruction results by LSTM are consistent with
the indication of the CCM index. Chattopadhyay et al. (2020)
also suggests that LSTM performs worse than RC in some
cases, and this might be related to the use of a simple variant
of the LSTM architecture. This variant of LSTM was tested
and it was found that the time-varying local mean in time
series would sometimes influence its performance. However,
further investigation is required for a deeper understanding of
the real reason. In this high-dimensional system, the recon-
struction quality is also influenced by the chosen explanatory
variables: the quality of reconstructing X1 from Y1, 1 is bet-
ter than the quality of reconstructingX1 fromX2 through RC
and LSTM (see Fig. 7b and c).

Besides, the number of the chosen explanatory variables
also influences the reconstruction quality. If more than one
explanatory variable in the same layer is used, the recon-
struction ofX1 fromX2 can be greatly improved (see Fig. 7b
and c). For example, when all of X2, X17, and X18 are act-
ing as the explanatory variables, the nRMSE of reconstructed
X1 is reduced from 0.13 to 0.08 (Table 3). For both RC and
LSTM, the multivariable reconstruction reaches lower error
than those from unit-variable reconstruction.

In the above results, the CCM index is used to select ex-
planatory variable for RC and LSTM. Now we employ more
variables to test the association between the CCM index of
the data and the performance of RC and LSTM. The values of
the CCM index are calculated between X1 and X2, X3, . . . ,
X18; meanwhile, X1 is reconstructed from X2, X3, . . . , X18.
We find a significant correspondence between the nRMSE
and the CCM index (Fig. 8) for both RC and LSTM. Here

Figure 9. Influence of strong nonlinear coupling on linear Pearson
correlation and machine-learning performance. (a) Comparison of
the linear correlation with different coupling strength. (b) Compar-
ison of the machine-learning performance with different coupling
strength. The black lines are the real series; the reconstructed se-
ries by RC (green lines), LSTM∗ (blue lines), and BP (red dots)
are shown. (Here the results of LSTM are overlapped with those of
RC.)

we only use a simple LSTM architecture, and there are many
other variants of this architecture where the abnormal point
of LSTM in Fig. 8 might be reduced. The result of Fig. 8 re-
veals the robust association between the CCM index and re-
construction quality in the machine-learning frameworks of
RC and LSTM. For other machine-learning methods, such
association deserves further investigation.

4.2.3 Performance of BP and LSTM∗ in the Lorenz 96
system

In nonlinear systems, the performance of reconstruction
through BP and LSTM∗ is much worse than that of RC and
LSTM (Fig. 5). Here we present a simple experiment to il-
lustrate what might influence the performance of BP and
LSTM∗ in a nonlinear system.
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Figure 10. (a) Daily time series of TSAT, NHSAT, and Nino 3.4 in-
dex. (b) Scatter plot of normalized NHSAT and normalized TSAT.
(c) Three-dimensional scatter plot of normalized NHSAT, normal-
ized TSAT, and normalized Nino 3.4 sea surface temperature.

The experiment is set up as follows: in Eq. (13), the value
of h1 is set as 0, and the value of θ is decreased from 0.7 to
0.3. When θ is equal to 0.7, the forcing from X1 to Y1, 1 is
weak (the Pearson correlation between X1 and Y1, 1 is only
0.48), and the performance values of BP and LSTM∗ are
not good. When θ is equal to 0.3, the forcing is dramati-
cally magnified. As the second subpanel in Fig. 9a shows, the
strong forcing makes Y1, 1 synchronized to X1, and the Pear-
son correlation between X1 and Y1, 1 is greatly increased to
0.8. When the forcing strength is magnified, the performance
of machine learning is also enhanced (Fig. 9b): the recon-
structed series by BP and the reconstructed series by LSTM∗

are much closer to the real target series. This means that the
reconstruction quality of BP and LSTM∗ is greatly improved
when the linear correlation is increased. This experiment re-
veals that the coupling strength in a nonlinear system can
alter the Pearson correlation of the two time series, which
further influences the performance of BP and LSTM∗ in a
nonlinear system.

However, RC and LSTM are not restricted to the Pear-
son correlation in this nonlinear system. When θ is altered
from 0.7 to 0.3, although the Pearson correlation is changed
a lot, the values of the CCM index are kept consistently
above 0.9. For all values of θ , RC is able to equally pro-
duce a good-quality reconstruction of X1. Figure 9b shows
that the reconstructed series through RC and LSTM always
overlap with the real time series. These results indicate that
the performance of both RC and LSTM is sensitive to the
value of CCM index, which is in line with the results given
in Sect. 4.2.2.

4.3 Application to real-world climate series:
reconstructing SAT

The natural climate series are usually nonstationary and are
encoded with the information of many physical processes in
the earth system. In the following, we illustrate the utility of
the above methods and conclusions by investigating a real-
world example.

The daily NHSAT and TSAT time series are shown in
Fig. 10a. There are quite different temporal patterns in the
NHSAT and TSAT series, with a weak linear correlation
(0.08; see Table 4) between them. In the scatter plot for the
NHSAT and TSAT (Fig. 10b), the marked nonlinear struc-
ture is observed between NHSAT and TSAT. Such a weak
linear correlation will make the linear regression method fail
to reconstruct one series from the other. Meanwhile, there
is no explicit physical expression that can transform TSAT
and NHSAT to each other. Now we try to use machine learn-
ing to learn their coupling between them and then to recon-
struct these climate series. The CCM index when NHSAT
cross maps TSAT is 0.70, and the CCM index when TSAT
cross maps NHSAT is 0.24 (Table 4). The CCM index means
that the information content of TSAT is well encoded in the
records of NHSAT, and the information transfer might be
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Figure 11. (a) Reconstructed TSAT time series from NHSAT, and its residual series (b); (c) reconstructed NHSAT time series from TSAT,
and its residual series (d); (e) reconstructed TSAT time series from NHSAT and Nino 3.4 index, and its residual series (f).

Table 4. Details of the temperature record reconstruction.

Input Output Corr. ρa→b Data length Neural RMSE nRMSE
(a) (b) (training / testing) network

RC 0.73 0.13
NHSAT TSAT 0.08 0.70 8182/5454 LSTM 1.14 0.20

BP 1.45 0.26

RC 0.97 0.21
TSAT NHSAT 0.08 0.24 8182/5454 LSTM 1.04 0.23

BP 1.23 0.37

mainly from TSAT to NHSAT. This finding is consistent with
previous studies (Vallis and Farneti, 2009; Farneti and Vallis,
2013). Further, the CCM analysis indicates that the recon-
struction from NHSAT to TSAT might obtain a better quality
than that from the opposite direction.

The results validate our conjecture that the nRMSE of re-
construction from NHSAT to TSAT is lower than that from
TSAT to NHSAT (Table 4). By using RC, the TSAT time
series can be relatively well described by the reconstructed
ones (Fig. 11a), with nRMSE equal to 0.13. This nRMSE is
a bit high because some extremes of the TSAT time series
have not been well described (Fig. 11b). When using TSAT
to reconstruct the time series of NHSAT, the reconstructed

time series cannot describe the real time series of NHSAT
(Fig. 11c), and the corresponding nRMSE is equal to 0.21.
Besides, we also use LSTM and BP to reconstruct these nat-
ural climate series; the performances of these two neural net-
works are worse than RC (Table 4). For BP, this worse per-
formance may be due to its inability to deal with nonlinear
coupling. LSTM performs worse than RC in this real-world
case, which might be induced by the used simple variant of
LSTM architecture.

We can further improve the reconstruction quality of
TSAT. Considering that the tropical climate system interacts
not just with the Northern Hemisphere climate system, we
can use the information of other systems to improve the re-
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Figure 12. (a) Comparison of the annual mean values between the
reconstructed TSAT and real TSAT. (b) Comparison of the power
spectrum between the reconstructed TSAT and real TSAT. (c) A
red-noise test for residual series.

construction. Looking at the time series of the Nino 3.4 in-
dex (Fig. 10a), some of its extremes occur at the same time
intervals as the extremes of TSAT. Moreover, when the Nino
3.4 index is included in the scatter plot (Fig. 10c), a nonlin-

ear attractor structure is revealed. We combine NHSAT with
the Nino 3.4 index to reconstruct the time series of TSAT
through RC. The reconstructed TSAT (Fig. 11e) is much
closer to the real TSAT series, and the corresponding nRMSE
has been reduced to 0.08.

Finally, we make a further comparison between the real
TSAT and the reconstructed TSAT. (i) The annual variations
of the reconstructed TSAT are close to those of the real TSAT
(Fig. 12a). (ii) The power spectra of TSAT and the recon-
structed TSAT are compared in Fig. 12b, and the main de-
viation occurs at the frequency bands of 0–15 d. The reason
might be that the local weather processes are not input into
this RC reconstruction. This conjecture can be further con-
firmed through a red-noise test with response time of 15 d
for the residual series (this red-noise test is the same as the
method used in Roe, 2009). All data points of the residual se-
ries lie within the confidence intervals (Fig. 12c). This means
that the residual is possibly induced by local weather pro-
cesses, and this information is not input into RC for the re-
construction.

5 Conclusions and discussions

In this study, three kinds of machine-learning methods are
used to reconstruct the time series of toy models and real-
world climate systems. One series can be reconstructed from
the other series by machine learning when they are governed
by the common coupling relation. For the linear system, vari-
ables are coupled through the linear mechanism, and a large
Pearson coefficient can benefit machine learning with bidi-
rectional reconstruction. For a nonlinear system, the coupled
time series often have a small Pearson coefficient, but ma-
chine learning can still reconstruct the time series when the
CCM index is strong; moreover, the reconstruction quality
is direction dependent and variable dependent, which is de-
termined by the coupling strength and causality between the
dynamical variables.

Choosing suitable explanatory variables is crucial for ob-
taining a good reconstruction quality. But the results show
that machine-learning performance cannot be explained only
by the linear correlation. In this study, we suggest to use the
CCM index to select explanatory variables. Especially for
the time series of nonlinear systems, the strong CCM index
can be taken as a benchmark to select an explanatory vari-
able. When the CCM index is higher than 0.5 in this study,
the nRMSE is often smaller than 0.1, with the reconstructed
series very close to the real series in the presented results.
Thus, the CCM index higher than 0.5 may be considered a
criterion for choosing appropriate explanatory variables. It is
well known that atmospheric or oceanic motions are nonlin-
early coupled over most timescales; therefore, in the natural
climate series, there would be similar nonlinear coupling re-
lations as found in the Lorenz 63 and the Lorenz 96 systems
(weak Pearson correlation but high CCM coefficient). If only
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Pearson coefficient is used to select the explanatory variable,
then some useful nonlinearly correlated variables may be left
out.

Finally, it is worth noting the potential application for ma-
chine learning in climate studies. For instance, when a series
b(t) is unmeasured during some period because of measur-
ing instrument failure but there are other kinds of variables
without missing observations, then CCM can be applied to
select the suitable variables coupled with b(t), and RC or
LSTM can be employed to reconstruct the unmeasured part
of b(t) (following Fig. 1). This is useful for some climate
studies, such as paleoclimate reconstruction (Brown, 1994;
Donner 2012; Emile-Geay and Tingley, 2016), interpolation
of the missing points in measurements (Hofstra et al., 2008),
and parameterization schemes (Wilks, 2005; Vissio and Lu-
carini, 2018). Our study in this article is only a beginning for
reconstructing climate series by machine learning, and more
detailed investigations will be reported soon.
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Appendix A: Governing equations for the LSTM
neural network

If a(t) and b(t) denote two time series and a(t) is input into
LSTM to estimate b(t), then the governing equations for the
LSTM architecture (Fig. 3) are as follows:

f (t) = σf
(
Wf [h (t − 1) , a (t)] + sf

)
, (A1)

i (t) = σf (Wi [h ( t − 1) , a (t)] + si) , (A2)
c̃ (t) = tanh(Wc [h (t − 1) , a (t)] + sh) , (A3)
c (t) = f (t)c (t − 1) + i(t)c̃ (t) , (A4)
o (t) = σh(Wh [h (t − 1) , a (t)] + sh), (A5)
h (t) = o(t) tanh(c(t) ), (A6)

b̂(t) = Woh h(t). (A7)

f (t), i (t), and o (t) denote the forget gate, input gate, and
output gate, respectively. h (t) and c (t) represent the hidden
state and the cell state, respectively; the dimension of the hid-
den layers is set as 200, which could yield the good perfor-
mance in our experiment. All these components can be found
in Fig. 3, and the information flow among these components
are realized by Eqs. (14)–(20). There are many parameters
in the LSTM architecture: σf is the softmax activation func-
tion; sf , si , and sh are the biases in the forget gate, the input
gate, and the hidden layers, respectively; the weight matrixes
Wf ,Wi ,Wc, andWoh denote the neuron connectivity in each
layer. These parameters need to be computed during training
(Chattopadhyay et al., 2020); a(t) and b̂(t) represent the in-
put and output time series.
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