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Abstract. Multi-model ensembles can be used to estimate uncertainty in projections of regional climate, but
this uncertainty often depends on the constituents of the ensemble. The dependence of uncertainty on ensem-
ble composition is clear when single-model initial condition large ensembles (SMILEs) are included within a
multi-model ensemble. SMILEs allow for the quantification of internal variability, a non-negligible component
of uncertainty on regional scales, but may also serve to inappropriately narrow uncertainty by giving a single
model many additional votes. In advance of the mixed multi-model, the SMILE Coupled Model Intercomparison
version 6 (CMIP6) ensemble, we investigate weighting approaches to incorporate 50 members of the Commu-
nity Earth System Model (CESM1.2.2-LE), 50 members of the Canadian Earth System Model (CanESM2-LE),
and 100 members of the MPI Grand Ensemble (MPI-GE) into an 88-member Coupled Model Intercomparison
Project Phase 5 (CMIP5) ensemble. The weights assigned are based on ability to reproduce observed climate
(performance) and scaled by a measure of redundancy (dependence). Surface air temperature (SAT) and sea
level pressure (SLP) predictors are used to determine the weights, and relationships between present and fu-
ture predictor behavior are discussed. The estimated residual thermodynamic trend is proposed as an alternative
predictor to replace 50-year regional SAT trends, which are more susceptible to internal variability.

Uncertainty in estimates of northern European winter and Mediterranean summer end-of-century warming is
assessed in a CMIP5 and a combined SMILE–CMIP5 multi-model ensemble. Five different weighting strategies
to account for the mix of initial condition (IC) ensemble members and individually represented models within
the multi-model ensemble are considered. Allowing all multi-model ensemble members to receive either equal
weight or solely a performance weight (based on the root mean square error (RMSE) between members and
observations over nine predictors) is shown to lead to uncertainty estimates that are dominated by the presence
of SMILEs. A more suitable approach includes a dependence assumption, scaling either by 1/N , the number of
constituents representing a “model”, or by the same RMSE distance metric used to define model performance.
SMILE contributions to the weighted ensemble are smallest (< 10 %) when a model is defined as an IC ensemble
and increase slightly (< 20 %) when the definition of a model expands to include members from the same insti-
tution and/or development stream. SMILE contributions increase further when dependence is defined by RMSE
(over nine predictors) amongst members because RMSEs between SMILE members can be as large as RMSEs
between SMILE members and other models. We find that an alternative RMSE distance metric, derived from
global SAT and hemispheric SLP climatology, is able to better identify IC members in general and SMILE mem-
bers in particular as members of the same model. Further, more subtle dependencies associated with resolution
differences and component similarities are also identified by the global predictor set.
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1 Introduction

Projections of regional climate change are both key to cli-
mate adaptation policy and fundamentally uncertain due to
the nature of the climate system (Deser et al., 2012; Kun-
reuther et al., 2013). In order to represent regional climate
uncertainty to policy makers, scientists often turn to multi-
model ensembles to provide a range of plausible outcomes
a region may experience (Tebaldi and Knutti, 2007). Un-
certainty in a multi-model ensemble is commonly estimated
from the ensemble spread, which can be represented, e.g.,
as the 5 %–95 % likely range of the distribution, and is usu-
ally presented with respect to the arithmetic ensemble mean
(e.g., Collins et al., 2013). This representation of uncertainty
appears unambiguous but is perhaps deceptively so. It is in-
fluenced by choices made in multi-model ensemble construc-
tion, choices that are often overlooked (Knutti et al., 2010a,
b).

Multi-model ensembles, such as those constructed from
Coupled Model Intercomparison Projects or CMIPs (Meehl
et al., 2000), tend to be comprised of both different mod-
els and multiple members of the same model, subject to the
same radiative forcing pathway intended to reflect plausible
future emissions scenario (van Vuuren et al., 2011; O’Neill
et al., 2014). This choice allows the multi-model ensemble
to represent two types of regional-scale uncertainty: model
uncertainty and internal variability (e.g., Hawkins and Sut-
ton, 2009; Deser et al., 2012). Model uncertainty accounts
for differences in how models simulate climate, from how
the equations governing flow in the atmosphere are numer-
ically solved to how sub-grid-scale processes in the climate
system are parameterized. Sub-grid-scale processes are often
the product of complex interactions and feedbacks between
the land surface, ocean, cryosphere, and atmosphere, many of
which cannot be directly measured (e.g., Seneviratne et al.,
2010; Deser et al., 2015). How models estimate these inter-
actions can result in various advantages and limitations in
regional climate representation and thus affect regional un-
certainty estimates.

By considering differences in regional “performance”, it
becomes clear that uncertainty is affected by the assumption
that each member of a multi-model ensemble is an equally
plausible representation of observed climate. Known biases
associated with cloud processes, land–atmosphere interac-
tions, and sea surface temperature (e.g., Boberg and Chris-
tensen, 2012; Li and Xie, 2012; Pithan et al., 2014; Merri-
field and Xie, 2016) may result in more uncertainty in pro-
jections of future climate than is warranted given our under-
standing of the climate system (Vogel et al., 2018). Using
expert judgment to weight or select multi-model ensemble
members based on process- or region-specific metrics of per-
formance has been shown to justifiably constrain uncertainty
in other studies (e.g., Abramowitz et al., 2008; Knutti et al.,
2017; Lorenz et al., 2018).

The second type of uncertainty, internal variability, re-
flects the regional influence of the amalgamation of unpre-
dictable fluctuations in the climate system (Hawkins and Sut-
ton, 2009; Deser et al., 2012; Knutti and Sedláček, 2013).
Internal variability is ostensibly a feature of the climate sys-
tem and manifests itself in climate variables, such as re-
gional surface air temperature (SAT), through a complex set
of controlling influences, chief among them being variabil-
ity in the attendant atmospheric circulation (Wallace et al.,
1995, 2015; Branstator and Teng, 2017). The influence of in-
ternal atmospheric variability on SAT can be quantified and
accounted for in projections of future climate using dynami-
cal adjustment methods (e.g., Deser et al., 2016; Sippel et al.,
2019). Additionally, internal variability can be explicitly rep-
resented by sets of simulations from the same model, subject
to identical forcing, wherein members differ only by initial
conditions (e.g., Kay et al., 2015; Maher et al., 2019). These
single-model initial condition large ensembles, or SMILEs,
have become an indispensable tool to concisely represent un-
certainty within a model, information that should be consid-
ered in a multi-model ensemble context (Rondeau-Genesse
and Braun, 2019).

The prospect of including SMILE members in a multi-
model ensemble directly challenges another assumption that
tends to be made when calculating probabilistic estimates
from multi-model ensembles: each member is an indepen-
dent representation of climate. Though all members of a
multi-model ensemble describe the same climate system, dif-
ferences in model structure and internal variability create
a distribution of regional climate change estimates. Differ-
ences in model structure are often welcome; for many ap-
plications, distributions comprised of several models are hy-
pothesized to reflect the range of possible climate outcomes
better than distributions from a single model (Abramowitz
et al., 2019). When different models (that are deemed inde-
pendent from each other) agree, there is a notion of robust-
ness and increased certainty in the outcome. Ultimately, there
is also a notion that as models improve, there will be a “con-
vergence to reality” with models independently simulating
the same “right” outcome.

In reality, however, members of a multi-model ensemble
are often dependent entities. Narrowing of uncertainty comes
through redundant representation of historical and future cli-
mate rather than through the independent simulation of the
right outcome (Herger et al., 2018). Redundancy within a
multi-model ensemble can arise from different models hav-
ing similar biases with respect to observations. Models have
historically shared code, from parametrization schemes to
full components, and tend to have the same limitations asso-
ciated with resolution (i.e., simplified topography) (Masson
and Knutti, 2011; Knutti et al., 2013; Boé, 2018). These com-
monalities can cause similar climate trajectories amongst
models with different names, complicating the notion of con-
vergence to reality through dependence of differently named
models. Another clear contributor to redundancy is multiple
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initial condition (IC) ensemble members that project climate
trajectories which only differ by internal variability; similar
trajectories are likely to exist amongst the 50 to 100 mem-
bers of a SMILE. It is therefore important when assembling
a multi-model ensemble that uncertainty estimates reflect the
fact that not every member is an independent entity (Pennell
and Reichler, 2011).

What constitutes an independent entity within a multi-
model ensemble remains a topic of debate (Annan and Har-
greaves, 2017; Abramowitz et al., 2019). Independence can
be decided a priori, i.e., that a model, as defined by its name,
is an independent entity. This choice renders IC members de-
pendent. It could also be decided that only models from dif-
ferent institutions of origin are independent entities, as in the
“same-center hypothesis” explored by Leduc et al. (2016).
In the absence of knowledge of model origin and develop-
ment, independent entities could instead be defined using
statistical properties of model outputs (Masson and Knutti,
2011; Bishop and Abramowitz, 2013). In this a posteriori
definition, models may have a degree of independence rather
than simply an independent or dependent designation (Knutti
et al., 2017).

Regardless of how dependent and independent entities are
defined, it is important that dependence is accounted for
and redundancy mitigated in order to avoid an overconfi-
dent, inappropriately narrow distribution of future change
(Leduc et al., 2016; Abramowitz et al., 2019). Dependent
information reduction can be achieved through a subset-
ting, with which information deemed dependent is discarded,
or through a weighting scheme, with which information is
scaled by degree of dependence. In this study, we evalu-
ate if a performance and independence weighting scheme
(Knutti et al., 2017; Lorenz et al., 2018; Brunner et al., 2019)
can be used to include three SMILEs in a CMIP5 multi-
model ensemble and provide a justifiably constrained esti-
mate of European regional end-of-century warming uncer-
tainty. Northern European winter and Mediterranean summer
SAT changes between the 1990–2009 and 2080–2099 mean
states are considered. We discuss details of the weighting
method including emergent predictor relationships and op-
timal parameter choices for attempting to comprehensively
characterize member performance while separating indepen-
dent information from information known to have a common
origin (SMILE members). We highlight a new metric, the es-
timated residual thermodynamic trend, which can be used as
an alternative to trend-based metrics that do not optimally
reflect a model’s performance on regional scales. We com-
pare how five different weighting strategies, based on dif-
ferent dependence assumptions, constrain uncertainty in a
CMIP5 multi-model ensemble with and without the SMILEs
included. Weighted SMILE contributions in each CMIP5–
SMILE “ALL” ensemble are explicitly computed. The five
weighting strategies come from the continuum of assump-
tions that can arise in multi-model ensemble construction:
(1) all members are independent and equally plausible (equal

weighting), (2) some members are more realistic than oth-
ers (performance weighting), (3, 4) members from the same
model are dependent (1/N scaling, N being the number of
IC members or modeling center contributions), and (5) all
members are dependent to some degree (RMSE distance
metric scaling). For the last approach, we demonstrate that
an RMSE independence scaling that groups SMILE mem-
bers and distinguishes them from other models can be ob-
tained using large-scale, long-term SAT and sea level pres-
sure (SLP) climatology fields. The SMILEs, CMIP5, and ob-
servational datasets used in the weightings are described in
Sect. 2, while the weighting schemes are detailed in Sect. 3.
The influence of SMILE inclusion on the weighting under
different dependence assumptions and the predictor set that
identifies SMILE members as dependent entities based on
RMSE distance are discussed in Sect. 4. To close, conclu-
sions and a discussion are presented in Sect. 5.

2 Data

The multi-model ensemble used in this study is comprised
of members from the CMIP5 archive and three SMILEs:
a 50-member ensemble generated using the Community
Earth System Model version 1.2.2 (CESM1.2.2-LE), the 50-
member Canadian Earth System Model version 2 large en-
semble (CanESM2-LE), and the 100-member Max Planck
Institute for Meteorology Grand Ensemble (MPI-GE). This
combined CMIP5–SMILE ensemble is summarized in Ta-
ble 1, which lists the name of each model and the mem-
bers used. A similar CMIP5 multi-model ensemble was
used in Lorenz et al. (2018) and Brunner et al. (2019) and
features 88 members from 40 (named) model setups, in-
cluding 13 initial condition ensembles ranging from 2 to
10 members. Additionally, for the GISS-E2-H and GISS-E2-
R experiments, NASA GISS provides members from three
physics-version (“p”) setups that differ in atmospheric com-
position (AC) and aerosol indirect effects (AIEs) (Miller
et al., 2014). We treat the three setups as follows: p1 (pre-
scribed AC and AIE) and p3 (prognostic AC and partial AIE)
members are treated as two-member IC ensembles, and the
p2 member (prognostic AC and AIE) is treated as a single-
member representation (Table 1). In Table 1, IC ensembles
are indicated in italics and SMILEs are indicated in bold
with a star. Horizontal lines denote modeling centers and/or
known development streams that are grouped as dependent
entities under the fourth independence assumption we inves-
tigated.

The CESM1.2.2-LE used in this study was derived from a
4700-year CESM control simulation with constant preindus-
trial forcing generated at ETH Zürich (Sippel et al., 2019).
CESM1.2.2 uses the Community Atmosphere Model ver-
sion 5.3 (CAM5.3) and has a horizontal atmospheric reso-
lution of 1.9◦× 2.5◦ with 30 vertical levels (Hurrell et al.,
2013). The preindustrial control run was branched at 20-
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Table 1. Summary of the CMIP5+SMILE multi-model ensemble used in this study. IC ensembles within CMIP5 are indicated in italics.
SMILEs are indicated in bold with a star. Modeling center and/or development stream groupings are separated by horizontal lines.

Group Model Members used Group Model Members used

ACCESS ACCESS1-0 r1i1p1 NASA GISS GISS-E2-R-CC r1i1p1
ACCESS1-3 r1i1p1 (cont.) GISS-E2-R r(1-2)i1p1

BNU-ESM r1i1p1 GISS-E2-R r1i1p2

NCAR CCSM4 r(1-6)i1p1 GISS-E2-R r(1-2)i1p3

CESM1-BGC r1i1p1 MOHC HadGEM2-AO r1i1p1
CESM1-CAM5 r(1-3)i1p1 HadGEM2-CC r1i1p1
CESM1.2.2-LE∗ r(0-49)i1p1 HadGEM2-ES r(1-4)i1p1

CMCC CMCC-CESM r1i1p1 IPSL IPSL-CM5A-LR r(1-3)i1p1
CMCC-CMS r1i1p1 IPSL-CM5A-MR r1i1p1
CMCC-CM r1i1p1 IPSL-CM5B-LR r1i1p1

CNRM-CM5 r(1,2,4,6,10)i1p1 MIROC MIROC-ESM r1i1p1

CSIRO-Mk3-6-0 r(1-10)i1p1 MIROC-ESM-CHEM r1i1p1

CCCma CanESM2-LE∗ r(1-50)i1p1 MIROC5 r(1-3)i1p1

CanESM2 r(1-5)i1p1 MPI-M MPI-ESM-LR r(1-3)i1p1

EC-EARTH r(1,2,8,9,12)i1p1 MPI-ESM-MR r1i1p1

FGOALS-g2 r1i1p1 MPI-GE∗ r(1-100)i1p3∗

FIO-ESM r(1-3)i1p1 MRI MRI-CGCM3 r1i1p1

NOAA GFDL GFDL-CM3 r1i1p1 MRI-ESM1 r1i1p1

GFDL-ESM2G r1i1p1 NCC NorESM1-M r1i1p1
GFDL-ESM2M r1i1p1 NorESM1-ME r1i1p1

NASA GISS GISS-E2-H-CC r1i1p1 BCC bcc-csm1-1-m r1i1p1
GISS-E2-H r(1-2)i1p1 bcc-csm1-1 r1i1p1

GISS-E2-H r1i1p2 inmcm4 r1i1p1

GISS-E2-H r(1-2)i1p3 Total 288 members

year intervals, starting from the year 580, to create an en-
semble with “macro”-initial conditions, i.e., different cou-
pled initial conditions picked from well-separated start dates
(Stainforth et al., 2007; Hawkins et al., 2016). Members of
the macro-initial-condition ensemble were run from 1850 to
1940 driven by historical CMIP5 forcing (Meinshausen et al.,
2011). At year 1940, each macro-initial-condition member
was branched into four different realizations, each subject to
an atmospheric temperature perturbation of 10−13 to create
“micro”-initial-condition ensembles (Hawkins et al., 2016).
From these micro-initial-condition ensembles, 50 members
were selected for the CESM1.2.2-LE (specifically, four
micro-ensemble members from macro-ensemble members 1
through 12 and two micro-ensemble members from macro-
ensemble member 13).

The MPI-GE was generated using the low-resolution setup
of the MPI Earth System Model (MPI-ESM1.1) (Giorgetta
et al., 2013). The 100-member ensemble has macro-initial

conditions: a preindustrial control simulation was branched
on 1 January for selected years between 1874 and 3524
to sample different states of a stationary and volcano-
free 1850 climate (Maher et al., 2019). The MPI-GE uses
ECHAM6.3 run in a T63L47 configuration (Stevens et al.,
2013) as its atmospheric component for a horizontal resolu-
tion of approximately 1.8◦.

The CanESM2-LE (Arora et al., 2011) was initiated from
the five CanESM2 members that contributed to CMIP5
(which are included in our CMIP5 basis multi-model en-
semble). As with CESM1.2.2, the CanESM2 large ensem-
ble has a combination of macro- and micro-initial condi-
tions. Macro-initial conditions were taken from the year 1950
of the five original CanESM2 members. Each were then
branched 10 times with micro-initial conditions (a random
permutation to the seed used in the random number genera-
tor for cloud physics) to give a total of 50 members (Swart
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et al., 2018). The CanESM2-LE uses the CanAM4 atmo-
sphere model run at a T63 spectral resolution.

The CMIP5 ensemble and three SMILEs are shown in
terms of their respective ensemble means and spreads (rep-
resented by the 5th–95th percentile of each distribution) in
Fig. 1 for the two regions and seasons of interest: north-
ern European (NEU) winter (December–January–February;
DJF) SAT (Fig. 1a) and Mediterranean (MED) summer
(June–July–August; JJA) SAT (Fig. 1b). The NEU and MED
regions used are the SREX regions defined in Seneviratne
(2012). All models are forced with historical CMIP5 forcing
from 1950 to 2005 followed by Representative Concentra-
tion Pathway 8.5 (RCP8.5) forcing for 2006–2099 (Mein-
shausen et al., 2011). The multi-model CMIP5 ensemble
(Fig. 1 blue) has a larger spread than the SMILEs, demon-
strating that model uncertainty does rise above well-defined
estimates of internal variability in the two European regions
and seasons considered. The combined macro–micro pertur-
bation CESM1.2.2-LE (Fig. 1 red) has a larger ensemble
spread than the CanESM2-LE (Fig. 1 yellow) but, on av-
erage, warms less by the end of the century. The MPI-GE
(Fig. 1 green) has approximately the same amount of JJA
MED warming as the CMIP5 ensemble average.

In addition to the multi-model ensemble, several obser-
vational estimates are used to assess model performance.
Two global atmospheric reanalysis products, ERA-20C and
NOAA-CIRES-DOE 20th Century Reanalysis V3 (NOAA-
20C), represent observed SLP, while ERA-20C and a
merged temperature dataset, Berkeley Earth Surface Temper-
ature (BEST), represent observed SAT. ERA-20C was cre-
ated by the European Centre for Medium-Range Weather
Forecasts (ECMWF) and assimilates surface pressure and
marine wind observations over the 20th century (1900–
2010) into the IFS version Cy38r1 model (Poli et al., 2016).
NOAA-20C, a co-effort between the National Oceanic and
Atmospheric Administration (NOAA), the Cooperative Insti-
tute for Research in Environmental Sciences (CIRES), and
the US Department of Energy (DOE), assimilates surface
pressure observations into the NCEP GFS v14.0.1 model
to provide output from 1836 to 2015 (Compo et al., 2011;
Slivinski et al., 2019). BEST was created to be an inde-
pendent estimate of global temperature obtained through the
spatiotemporal interpolation of in situ temperature measure-
ments (Rohde et al., 2013).

The Knutti et al. (2017) weighting scheme can comprehen-
sively account for observational uncertainty (Brunner et al.,
2019), but for this study, we chose to use the average of
two observational estimates in order to have a simple and
straightforward definition of climate within which the sen-
sitivity of the weighting scheme can be interrogated. ERA-
20C and NOAA-20C reanalyses were chosen because they
provide temporally and spatially complete fields that extend
back to 1950. Additionally, as reanalysis products are, after
all, model-based, we chose a reanalysis product with both
SLP and SAT available (ERA-20C), as well as SAT and

SLP fields from different sources (NOAA-20C and BEST).
We further used the SLP–SAT relationship to obtain the
circulation-induced component of SAT, which is removed
to obtain the estimated residual thermodynamic SAT trends
(see Appendix A). Though all products are observational es-
timates, we henceforth refer to them as “observations” or
“OBS” to distinguish them from members of the multi-model
ensemble.

3 Weighting schemes

The weighting strategies used to constrain uncertainty in this
study are rooted in a combined performance and indepen-
dence weighting metric developed by Knutti et al. (2017),
following on the work of Sanderson et al. (2015a, b). Sum-
marized in the subsections below, the five strategies consid-
ered arise from common assumptions surrounding plausibil-
ity and similarity made about constituents of multi-model en-
sembles. With the exception of the first strategy, which as-
signs each member an equal weight, the basic principle of
the weighting is as follows: a member will receive a perfor-
mance weight based on how closely it resembles observed
climate (based on nine chosen predictors; detailed in the fol-
lowing section). That performance weight will then be scaled
by a measure of dependence that represents whether (or to
what degree) a member is identified as a “duplicate” of an-
other member over the historical period. It is important to
note that dependence in this study is never determined by
future behavior. Doing so would jeopardize the “agreement
suggests robustness” paradigm by penalizing convergence.
Rather, dependence is either a model property decided upon
beforehand or determined through RMSE distances between
historical aspects of climate.

3.1 Equal weighting

The first way in which the multi-model ensemble is weighted
is by all members receiving a weight, wI

i , of 1.

wI
i = 1 (1)

This equal weighting follows from the assumption that all
multi-model ensemble members are independent and equally
plausible and is sometimes referred to as a “model democ-
racy” assumption (Knutti et al., 2010a; Knutti, 2010). In
instances in which SMILEs are incorporated into a multi-
model ensemble, the equal weighting strategy is clearly
flawed; 50–100 members from the same model is a clear vot-
ing advantage within the model democracy. However, equal
weighting serves as a baseline handling of multi-model en-
semble information against which other weighting strategies
can be compared.
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Figure 1. Observational estimates (OBS; gray), the CMIP5 ensemble (blue), and the three SMILEs CESM1.2.2-LE (red), CanESM2-LE
(yellow), and MPI-GE (green) evaluated in this study, shown in terms of area-averaged and seasonally averaged absolute surface air temper-
ature time series (SAT; ◦C). The two OBS datasets, ERA-20C Temperature and the Berkeley Earth Surface Temperature (BEST) product, are
shown in solid gray and dashed gray, respectively. Their average, used to determine member performance, is shown in solid black. For the
CMIP5 and three SMILEs, the ensemble means across members are shown in solid color; the shading indicates the 5th–95th percentile of
each distribution as a measure of ensemble spread. Note that the CMIP5 ensemble is a multi-model, multi-initial-condition member ensemble
of 88 members from 40 (named) model setups, not the “one model, one vote” ensemble often used in multi-model ensemble studies. Panel
(a) shows RCP8.5 projections for northern European winter (DJF NEU), and panel (b) shows RCP8.5 projections for Mediterranean summer
(JJA MED) SAT. The number of members in each ensemble is indicated in parenthesis in the legend.

3.2 Performance weighting

The second weighting strategy builds upon the first in that all
members are still assumed to be independent, but some mem-
bers are identified to be more realistic than others. Members
are thus weighted (wII

i ) by a measure of performance, here
based on the numerator of the Knutti et al. (2017) weighting
function.

wII
i = e

−
D2
i

σ2
D (2)

The term Di represents the RMSE distance between a multi-
model ensemble member and observations; wII

i decreases
exponentially as members increasingly differ from observa-
tions (Di � 0). A shape parameter σD dictates the width of
the performance weight Gaussian, determining how far apart
a member and observations must be to be down-weighted.
For a smaller value of σD , models are more rapidly down-
weighted as they diverge from observed climate, which often
results in a weighting whereby few models receive weights
of meaningful magnitude. For a larger value of σD , models
are not as strongly penalized for not resembling observations,
which often results in a more even distribution of weights
within the ensemble. Here, we select σD to be 0.32 for the
DJF NEU weighting and 0.4 for the JJA MED weighting (fur-
ther discussion in Appendix B).

3.3 1/N scaling, IC members

The third weighting strategy extends the performance
weighting by including a dependence assumption, making

it suitable for the combined CMIP5–SMILE ensemble we
evaluate. Each model gets a unique weight. The independent
entity, a model, is assumed to be determinable by name (as
listed in Table 1), which renders members of IC ensembles
within the multi-model ensemble (the 13 within the CMIP5
ensemble and the three SMILEs) dependent entities. To
achieve the model weighting, models that are represented by
one member receive their performance weight wII

i . Models
that are represented by IC members receive an average of the

performance weights of their N constituents ( 1
N
6N1 e

−
D2
j

σ2
D ).

That average performance weight, divided by N , is assigned
to each IC member. Therefore, the weight each member re-
ceives, wIII

i , is

wIII
i =

 1
Ni
6
Ni
1 e
−
D2
j

σ2
D


Ni

. (3)

Each IC member is assigned the average performance
weight of the IC ensemble (rather than its individually com-
puted performance weight) to reflect the assumption that
all IC members represent an equally likely outcome of the
model. This choice rectifies the fact that when computed by
RMSE, performance weights differ between IC members due
to internal variability.

3.4 1/N scaling, modeling center

The fourth weighting strategy is identical to the third but
has a different definition of a model. The independent en-
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tity is determined not by name, but by a conjecture about
model origin. Similar to the same-center hypothesis (Leduc
et al., 2016), we group all members provided by a model-
ing center and/or in a known development stream (i.e., the
CESM1.2.2-LE is grouped with the NCAR models, though
it was run at ETH Zürich) as dependent entities. The weight
of each model, wIV

i , is computed as in the IC case, with av-
erages taken over N , the number of members that constitute
a model.

wIV
i =

 1
Ni
6
Ni
1 e
−
D2
j

σ2
D


Ni

(4)

3.5 RMSE distance scaling

Finally, the fifth weighting strategy operates under the as-
sumption that dependence cannot necessarily be determined
by model name, but shared biases in simulating histori-
cal climate can give an idea of dependence that comes
from differently named models sharing ideas and code. In-
stead of relying on knowledge of model origin, the RMSE
weighting (wV

i ) initially proposed by Knutti et al. (2017) re-
lies solely on model output to determine a model’s overall
weight. It features an independence scaling based on RMSE
distance metrics in addition to the RMSE-derived perfor-
mance weights. For results to be compatible with past assess-
ments of this weighting scheme (e.g., Lorenz et al., 2018;
Brunner et al., 2019), we assign each member their unique
performance weight (as computed in wII

i ) even if they are
IC ensemble members. This puts the RMSE weighting in
contrast to the 1/N scaling approaches, which ensure that
IC ensemble members have identical weights.

wV
i =

e
−
D2
i

σ2
D

1+6Mj 6=ie
−
S2
ij

σ2
S

(5)

Sij represents the distance between multi-model ensemble
member i and multi-model ensemble member j . Unlike in
the 1/N strategies, the RMSE independence scaling is based
solely on Sij , how far a member is from all the other mem-
bers in the ensemble, and not on any prior knowledge of the
multi-model ensemble member’s origin. As with the perfor-
mance weight, a shape parameter σS dictates the width of
the Gaussian that is applied to the member pairs. σS repre-
sents how close a member must be to another member before
they are considered dependent entities. For a member with no
close neighbors (Sij � σS), the independence scaling tends
to 1, preserving the member’s overall weight. For a mem-
ber with many close neighbors (Sij � σS), the independence
scaling is greater than 1 and reduces its overall weight. For
the CMIP5–SMILE ensemble, the goal is to select a σS that is
large enough such that members of a SMILE are considered

dependent entities but not so large that the majority of multi-
model ensemble members are considered dependent as well.
Here, we select DJF NEU σS to be 0.25 and JJA MED σS
to be 0.26. Sensitivity to the choice of σS and further details
on selection strategies are discussed in Appendix B. Upon
computation of the weights in each strategy, each weight is
normalized by 6iwi such that they sum to 1.

3.6 Defining “climate”: predictor selection

The performance weight used in weighting strategies two
through five and the independence scaling used in strategy
five are based on a chosen definition of climate. A model’s
performance is based on its ability to reproduce observed cli-
mate. Under assumption five, a member’s independence is
based on how much its climate differs from the climate in
other members. When defining climate, the aim is to opti-
mize the “fitness for purpose”, which should include choos-
ing predictors that are physically associated with the target
and will indicate if a model is biased in a way that renders
it unsuitable for realistic simulation of the target. For exam-
ple, in Knutti et al. (2017), aspects of climate relevant for
September sea ice extent, such as the climatological mean
and trend in hemispheric mean September Arctic sea ice ex-
tent, were chosen. These chosen predictors reflected the fact
that models with almost no sea ice in the present day or sig-
nificantly more sea ice in the future than presently observed
were less suitable for the task of projecting changes in sea
ice extent. It is also good practice to avoid using a single
predictor to define climate to avoid an overconfident uncer-
tainty estimate. No one model property can comprehensively
reflect if the model is “good” for a particular purpose, and
it is dangerous to constrain uncertainty by dismissing mod-
els that do not match observations by a particular statistical
definition for those that happen to be tuned to match that
definition. Lorenz et al. (2018) discuss a more holistic strat-
egy for choosing predictors and ultimately selected from a
set of 24 predictors deemed relevant for projecting North
American maximum temperature based on known physical
relationships, predictor–target correlations, and variance in-
flation considerations.

Here fitness for purpose is a relatively simple and straight-
forward definition of climate within which the sensitivity of
the weighting scheme can be interrogated. We base the per-
formance weighting and the RMSE independence scaling on
nine predictors: the climatology and interannual variability
(represented by standard deviation) of SAT and SLP during
the periods of 1950–1969 and 1990–2009 and a 50-year de-
rived SAT trend (estimated residual thermodynamic trend;
described in more detail in subsequent paragraphs) for the
period of 1960–2009. We chose predictors to be aspects of
regional temperature and pressure in a domain that encom-
passes modes of atmospheric circulation variability relevant
to European climate because they are (1) physically associ-
ated with the target (end-of-century warming) and (2) fields
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that may reflect model biases that would affect realistic simu-
lation of future climate. For example, a model with a warmer-
than-observed mean state in the Mediterranean may expe-
rience an enhanced land–atmosphere feedback mechanism
that amplifies drying and warming of the region (e.g., Chris-
tensen and Boberg, 2012; Mueller and Seneviratne, 2014;
Vogel et al., 2018). SAT and SLP are found to be highly rel-
evant predictors by earlier studies (Brunner et al., 2019) and
are among the most comprehensively measured atmospheric
fields prior to the satellite era (Trenberth and Paolino, 1980).
In terms of spatial domain, SAT climatology and variabil-
ity predictors are computed over their corresponding ocean-
masked SREX regions (i.e., NEU for DJF and MED for JJA),
and SLP climatology and variability predictors are computed
over a larger European sector domain that includes the North
Atlantic (25–90◦ N and 60◦W–100◦ E). The derived SAT
trend, or the estimated residual thermodynamic trend, is com-
puted over the ocean-masked continental European domain
(EUR; 30–76.25◦ N and 10◦W–39◦ E).

To compute the aggregate distance metrics from nine pre-
dictors, all predictor and observational fields are bilinearly
interpolated to a shared 2.5◦× 2.5◦ latitude–longitude grid.
The predictors are then time-aggregated, with the mean or
standard deviation computed over the periods 1950–1969
and 1990–2009 and the estimated residual thermodynamic
trend computed over the period 1960–2009. For each time-
aggregated predictor, the differences between the observed
mean value and member value (or member value and mem-
ber value in the case of the RMSE independence scaling) are
computed at each grid point and subsequently squared. The
squared differences are then area-averaged over the predic-
tor domain and square-rooted to obtain an RMSE distance
for observed–member and member–member pairs. For each
predictor, the resulting distributions of observed–member
and member–member RMSEs are then normalized by their
midrange value ((maximum+minimum)/2) such that the
distance for each of the nine predictors is on the same order
of magnitude and can be combined into a singleDi (Fig. B1)
or Sij value (Fig. B2) for each member.

A final consideration in predictor selection is one of re-
lationships between past and future predictor behavior. A
model’s performance weight is based on its ability to repro-
duce observed climate, and this methodological choice fol-
lows from the concept of emergent constraints (e.g., Hall
and Manabe, 1999; Allen and Ingram, 2002; Borodina and
Knutti, 2017). The assumption is that if a model accurately
represents an aspect of historical climate, it is likely to realis-
tically represent relevant physical processes and is therefore
likely to provide a reliable future projection. If a model is sig-
nificantly biased with respect to observed climate, its future
representation of climate may be cause for concern (Knutti
et al., 2017), particularly when a statistical relationship be-
tween the historical and future climate feature of interest ex-
ists. In the absence of a strong statistical relationship, predic-

tors serve to add degrees of difference between members that
helps to ward against overconfident weighting.

Statistical relationships between historical and future cli-
mate can be obscured by internal variability, and the inclu-
sion of SMILEs in a multi-model ensemble highlights the
need to understand the role of internal variability in the cho-
sen predictors. In particular, internal variability is shown to
influence trends in regional SAT even on the 50-year predic-
tor timescales we have selected (Deser et al., 2016). Because
of this, a member may have a similar-to-observed SAT trend
(and thus a higher performance weight) by chance, simply
because it has similar-to-observed climate variability over
the trend period (i.e., a similar set of El Niño and La Niña
events or similar phasing of the Atlantic Multidecadal Oscil-
lation). Because internal variability is inherently random in
temporal phase (Deser et al., 2012), a member’s match to ob-
servations over one trend period does not guarantee a match
in the future. This issue is demonstrated in Fig. 2ai, which
shows that there is no discernible relationship (R2

∼ 0) be-
tween the DJF EUR SAT trend for 1960–2009 and for 2050–
2099 in CMIP5 with (black line) or without (blue line) the
SMILEs. Even the two observational estimates differ in the
European winter trend by more than a degree over 50 years.
In summer, a season with less midlatitude climate variation,
a relationship emerges between 1960–2009 and 2050–2099
European SAT trends. The linear relationship between past
and future trends is reinforced by the SMILEs in a model
mean sense; i.e., the three new models added to the CMIP5
ensemble support the relationship (Fig. 2bi). It is not evident
within the SMILEs themselves, which reflects the fact that
the relationship is due to model differences and not the be-
havior of individual IC members.

The removal of the estimated influence of internal atmo-
spheric variability from regional SAT, however, provides an
alternative performance metric with which observations and
models can be compared. Using a method of dynamical ad-
justment (described in Appendix A and in further detail in
Deser et al., 2016), we construct an estimate of the compo-
nent of SAT variability induced by large-scale atmospheric
circulation patterns, remove it from the SAT record, and ob-
tain the estimated residual thermodynamic trend for 1960–
2009 and 2050–2099. The estimated residual thermodynamic
trend is an estimate of both the influence of surface processes
(i.e., land–atmosphere interactions; Lehner et al., 2017; Mer-
rifield et al., 2017) and the influence of the radiative forc-
ing, an influence often defined as the forced response. In the
model world, the forced response of a field is often defined
as the ensemble mean or average across multiple ensemble
members. However, there is no observational equivalent to
the ensemble mean; there is only one observed realization of
climate. Therefore, we use the estimated residual thermody-
namic trend as a predictor because it can be computed in the
same manner through dynamical adjustment in both observa-
tions and each multi-model ensemble member.
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Figure 2. Predictor relationships of the domain-averaged 50-year trends of (a) DJF and (b) JJA European (EUR) SAT. 50-year raw trends are
shown in (i), and 50-year estimated residual thermodynamic trends are shown in (ii). In each panel, 1960–2009 is shown on the abscissa and
2050–2099 is shown on the ordinate. ERA-20C (BEST) observational estimates of the 1960–2009 trends are indicated by the solid (dashed)
vertical lines. Least-squares regression fits (solid lines) and R2 values computed solely for the CMIP5 output are shown in blue, and those
computed for ALL output (CMIP5 and the three SMILEs) are shown in black.

Internal atmospheric variability serves to amplify both
observed SAT trends in winter by approximately 0.6 ◦C.
Removing the influence of dynamics results in an aver-
age observed estimated residual thermodynamic trend that
falls centrally within the CMIP5 and SMILE distributions

(Fig. 2aii). In summer, dynamical adjustment also centers the
estimated residual thermodynamic trend and slightly reduces
the difference between observational datasets (Fig. 2bii). In
terms of weighting, the shift of observed values to the center
of the model distribution will lead to more models “perform-
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ing” in their simulation of trend, which will, in turn, allow
more models to contribute to the uncertainty estimate. The
estimated residual thermodynamic trend can also be thought
of as a property of each model, a measure that includes the
response to the shared forcing analogous to climate sensitiv-
ity (Knutti et al., 2017). We find that SMILE members, which
share both model setup and forcing, also tend to have similar
estimated residual thermodynamic trends (Fig. 2a and bii).
In winter, the clustering of SMILE-estimated residual ther-
modynamic trends is striking in comparison with SMILE
trends: CESM1.2.2-LE members tend to have the least EUR
warming in both periods, while CanESM2-LE members tend
to warm the most. The addition of the SMILEs then intro-
duces a slightly positive relationship between past and fu-
ture responses (Fig. 2aii, black trend line) not apparent in
the CMIP5 ensemble (Fig. 2aii, blue trend line), though no
strong relationship emerges from variability in either case.
In summer, the positive relationship seen between past and
future Mediterranean SAT trends (Fig. 2bi) is robust to the
combination of removing internal atmospheric variability
and adding the SMILES (Fig. 2bii). CanESM2 has the most
JJA MED warming in both the past and future periods, while
MPI-GE has the least. Because estimated residual thermody-
namic SAT trends in the broader European region are more
comparable between members and observations due to the
removal of an estimate of the influence of atmospheric vari-
ability that manifests on multidecadal timescales, we chose
them as the ninth predictor in the definition of climate used
in our performance weightings and RMSE independence
weighting. Emergent relationships within the other eight pre-
dictors are discussed in Appendix C.

4 Results

To assess the influence of the weightings, we evaluate the
magnitude of regional European end-of-century warming in
terms of the SAT change (1) from 1990–2009 climatology
to 2080–2099 climatology. Two ensembles are considered,
one comprised solely of CMIP5 members (CMIP5; distribu-
tion of 88 values) and one comprised of all available mem-
bers from CMIP5 and the three SMILEs (ALL; distribu-
tion of 288 values). The CMIP5 and ALL SAT 1 distribu-
tions are shown side by side as box-and-whisker elements
in Fig. 3a and b for the five weighting strategies considered:
equal, performance, 1/N scaling of IC members, 1/N scal-
ing of modeling center contributions, and RMSE distance
scaling. Weighted ensemble mean values are shown by solid
horizontal lines within the box elements. Weighted ensemble
spread is illustrated by the box, which indicates the 25th and
75th percentiles, and the whisker, which indicates the 5th and
95th percentiles.

For each weighting strategy, comparisons between the
CMIP5 and ALL distributions help to elucidate (i) how the
weighting constrains uncertainty in the magnitude of end-of-

century regional European warming and (ii) how the inclu-
sion of SMILE members influences the distribution. To ex-
plicitly determine the contribution of the SMILEs, we also
show the fraction of total weight received by each SMILE
and CMIP5 in Fig. 3c and d. Contributions are determined
by summing the normalized weights of the 50 CESM1.2.2-
LE members (red bar), 50 CanESM2-LE members (yellow
bar), 100 MPI-GE members (green bar), and the remaining
88 CMIP5 members (blue bar).

For the most part, the weighting strategies introduce only
modest distributional shifts; both northern European winters
and Mediterranean summers are projected to warm, most
likely by about 5–6 ◦C, by the end of the century (Fig. 3a
and b). What is more at issue than the distributional statis-
tics, though, is what the distribution actually represents. An
equal weighting results in a distribution representative of
warming in the models with the most votes, in this case the
SMILEs. In both seasons, the equal weighting demonstrates
why it is important to treat SMILE members as dependent
entities within a multi-model ensemble. The CMIP5 ensem-
ble projects an ensemble mean end-of-century warming of
5.9 ◦C and an interquartile spread of 2.2 ◦C for northern Eu-
ropean winter (Fig. 3a), as well as an ensemble mean end-
of-century warming of 5.5 ◦C and an interquartile spread of
1.5 ◦C for Mediterranean summer (Fig. 3b). The addition of
200 SMILE members to the 88-member CMIP5 ensemble
shifts the end-of-century warming distributions towards less
DJF NEU end-of-century warming and more JJA MED end-
of-century warming; it also reduces the interquartile spread
by approximately 25 % in both cases. The large contributions
of the three added SMILEs artificially constrain uncertainty:
the CESM1.2.2-LE and CanESM2-LE each receive 17.4 %
of the total ALL ensemble weight, while the MPI-GE makes
up the majority 34.7 % (Fig. 3c and d).

Performance weighting results in a distribution represen-
tative of warming in the models that historically get things
right. By diminishing the contribution of members that dif-
fer from observational estimates, the performance weight-
ing acts to constrain uncertainty in both the CMIP5 and the
ALL ensemble. For DJF NEU SAT change, the performance
weighting shifts the CMIP5 ensemble mean downwards by
0.75 ◦C, the 75th percentile downwards by 1.2 ◦C, and the
25th percentile downwards by 0.44 ◦C. This distributional
shift towards less end-of-century warming is a due, in part,
to members with SAT 1 greater than 8 ◦C receiving weights
that are 2 orders of magnitude smaller than the average as-
signed weight. Uncertainty in the DJF NEU ALL ensemble
is constrained both by the performance weighting diminish-
ing the contribution of CMIP5 members and because MPI
is one of the highest-performing models based on the cho-
sen DJF predictors. The high-performing MPI-GE receives
65.8 % of the total ALL ensemble weight, though individual
MPI-GE members only receive up to 3 times more weight
than the averaged assigned weight. The aggregate impact
of 100 high-performing members is outsized and results in
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Figure 3. (a) Box-and-whisker plot showing how the five weighting strategies effect the distributions of DJF NEU SAT change (1, (2080–
2099)–(1990–2009)) for the CMIP5 ensemble (blue) and ALL ensemble (CMIP5 with the three SMILEs; gray). The box element spans the
25th to 75th percentile of the distribution; mean SAT change is indicated by the horizontal line within the box. The whisker element spans
the 5th to 95th percentile. (b) As in (a), but for JJA MED SAT change. (c) The contribution of SMILE and CMIP5 members to the DJF NEU
ALL ensemble under different weighting strategies in terms of fraction of total weight. (d) As in (c), but for the JJA MED ALL ensemble.

the narrowing of the performance-weighted end-of-century
warming distribution. The narrowing does not reflect the in-
creased certainty that comes from the agreement of indepen-
dent entities within the ensemble. Instead, it exemplifies the
fact that there is a need for a dependence assumption in order
to avoid the outsized influence that comes from being both
historically realistic and numerously represented in the en-
semble. For JJA MED SAT change, the performance weight
reduces the contribution of the three SMILEs to the ALL
distribution in comparison to the equal weighting case, with
the largest reduction made to the CanESM2-LE contribution
(17.4 % to 7.4 %; Fig. 3d). However, the three SMILEs (three
independent entities) still receive 51 % of the total JJA MED
ALL ensemble weight, their contributions again augmented
by numerous representations. As in the equal weighting case,
the JJA MED ALL performance-weighted ensemble mean is
still modestly shifted towards more end-of-century warming
than its JJA MED CMIP5 counterpart. This reflects the above
CMIP5 average SAT change of the CESM1.2.2-LE and the
CanESM2-LE in Mediterranean summer.

In an effort to more appropriately handle the mix of mod-
els and IC members present in the ALL ensemble, we next
explore three scalings that reflect different member depen-
dence assumptions: that IC members are dependent (Fig. 3a
and b; 1/N , IC members), that modeling center contributions
are dependent (Fig. 3a and b; 1/N , modeling center), and
that members with similar historical climate are dependent
(Fig. 3a and b; 1/N , RMSE). The 1/N IC member scaling is
based on the widely accepted assumption that IC ensemble
members are, by definition, dependent. Originating from the
same model setup, differences in IC members are not due to
differences in model skill. Therefore, it follows that IC mem-
bers should all receive the same performance weight, which,
in aggregate, reflects the skill of its basis model. We achieve
this by averaging the performance weights of all members of
a SMILE or CMIP5-based IC ensemble (Table 1, in italics)
and subsequently dividing this average performance weight
by the number of members (N ). This reduces the number of
unique weights in the CMIP5 ensemble from 88 (each mem-
ber receive a unique weight) to 44 and the number of unique
weights in the ALL ensemble from 288 to 47.
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The scaling of IC ensemble member weight within the
CMIP5 ensemble (blue element) decreases DJF NEU end-
of-century warming uncertainty and slightly increases JJA
MED end-of-century warming uncertainty with respect to
equal weighting. It is therefore evident that the IC ensem-
bles within CMIP5, which range from 2 to 10 members,
exert an influence on the performance-weighted DJF NEU
distribution in the same way the SMILEs influence the cor-
responding performance-weighted ALL distribution. While
this is not seen in the corresponding JJA MED CMIP5 equal
and performance weightings, it is important to note that even
two or three extra votes for a high-performing model are
enough to influence uncertainty. The reduction of IC mem-
ber influence is even more striking in the ALL distribution;
the three SMILEs contribute 11.4 % of the total weight in
the DJF NEU and 3.1 % in the JJA MED, down from perfor-
mance weight contributions of 81.6 % and 50.7 %, respec-
tively. As with other strategies, the 1/N IC-member-scaled
DJF NEU ALL distribution is shifted towards less end-of-
century warming with respect to its CMIP5 counterpart. The
ALL and CMIP5 1/N IC-member-scaled JJA MED distribu-
tions are almost identical.

In addition to IC members, it is reasonable to assume
that members of the same model that differ in resolution
(i.e., MPI-ESM-LR and MPI-ESM-MR) or in the compo-
nent module used (i.e., MIROC-ESM and MIROC-ESM-
CHEM) are dependent entities. However, determining where
to draw the line between dependence and independence is
difficult; models from different modeling centers share com-
ponents, while models in a modeling center’s development
chain can differ from each other in most major parame-
terizations (Knutti et al., 2013). Here, we chose to take
a logical approach to the dependent entity grouping based
largely on model name or knowledge of institution of origin
(Table 1, “Group” column). 1/N modeling center weights
are computed in the same manner as the 1/N IC mem-
ber weight within these broader groupings. The number of
unique weights becomes 20 in both the CMIP5 and ALL
ensembles because the CESM1.2.2-LE is grouped with the
other NCAR models, the CanESM2-LE is grouped with the
five members of CanESM2 in the CMIP5 ensemble, and
the MPI-GE is grouped with MPI-ESM-LR and MPI-ESM-
MR members. The 1/N modeling center scaling results in
similar CMIP5 and ALL end-of-century warming distribu-
tions in both the DJF NEU and JJA MED, with distributions
characterized by positive skewness and a narrower interquar-
tile range than in the 1/N IC member scaling case. The
SMILE contributions all approximately double from their
1/N IC member scaling levels to contribute a combined
22.3 % to the DJF NEU and 6.7 % to the JJA MED ALL dis-
tributions, respectively.

Finally, in the instance that dependence is not known a pri-
ori, an RMSE-based metric can be used to assign depen-
dence. The idea is that because of model biases, dependent
entities can be identified by their similar climates. Using the

same set of predictors as used for performance, each member
receives a unique weight: RMSE-based performance scaled
by RMSE-based dependence. The RMSE independence scal-
ing allows for more SMILE contribution than the 1/N inde-
pendence scaling approaches (Fig. 3c and d) because internal
variability distinguishes SMILE members from one another
and thus allows them to be treated as separate entities. With
more entities in the ensemble, it follows that the degree of
dependence of the existing CMIP5 models increases (CMIP5
models become more dependent) in tandem with the SMILE
member degree of dependence decreasing (SMILE members
become less than fully dependent). In the DJF NEU, it is
striking that the high-performing MPI-GE again contributes
over 40 % of the total weight. In the JJA MED, the RMSE
independence scaling leads to comparable CMIP5 and ALL
distributions, with the ALL distribution projecting slightly
less warming than the CMIP5 distribution. This is in contrast
to the performance-weighted case in which the ALL distribu-
tion is narrower and features more warming than the CMIP5
distribution.

Reconciling the RMSE and 1/N scalings

For the weighting approach introduced by Knutti et al. (2017)
to be suitable for incorporating large initial condition ensem-
bles into a multi-model ensemble, there must be a demon-
strable reconciliation between the 1/N IC member and the
RMSE independence scalings. The RMSE independence
scaling has the ability to assign a degree of independence to
all members. This addresses the issue that we may not truly
know how independent a model is based on name or model-
ing center of origin alone. However, when dependent entities
(i.e., SMILE members) are known, the RMSE metric must be
able to identify them as dependent and scale their influence
appropriately. In practice, this means we seek an RMSE scal-
ing that approaches (or exceeds) 1/N for the SMILEs and the
IC ensembles within the CMIP5 ensemble. The goal of an
RMSE scaling proportional to ensemble size comes with the
understanding that scaling may be larger if the IC ensemble
is very similar to other models or smaller if the IC ensemble
is not fully identified as one model (as was the case with the
nine-predictor RMSE scalings).

One way to achieve an RMSE scaling that identifies
IC members as dependent is to remove internal variability
from the metric through predictor choice. While it would
not be good practice to base member performance on few
predictors because of overconfidence concerns, member de-
pendence may be more accurately reflected by fewer predic-
tors that distinguish models from one another. The advan-
tage of choosing different sets of predictors for determining
dependence and performance is twofold: first, by selecting
for ability to distinguish models rather than realism, depen-
dence predictors can achieve a more substantial separation
between SMILE–SMILE distances and SMILE–model dis-
tances. This reduces reliance on and sensitivity to the in-
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dependence shape parameter σS (Appendix B). Second, the
convergence to reality paradox is no longer an issue; models
will not be down-weighted for moving closer to observations
(and thus each other) based on performance predictors.

We find that large-scale, long-term climatological aver-
ages are the most suitable predictors for this purpose because,
in general, the influence of internal variability increases on
smaller spatial scales and shorter timescales (Hawkins and
Sutton, 2009; Lehner et al., 2020). The climatological time
aggregation (CLIM) was chosen because, of the nine origi-
nal predictors utilized, 20-year climatological averages clus-
ter in SMILEs more than 20-year variability or 50-year de-
rived trend values on regional scales (Figs. 2, C1, and C2).
We average over the entire historical period, 1950–2009, to
obtain two long-term CLIM predictors: annually averaged
Northern Hemisphere SLP and annually averaged global land
SAT. The Northern Hemisphere region was selected for SLP
to maintain the distinguishing characteristics of mean circu-
lation biases in the target-relevant European sector (Figs. C3
and C4), while global land was selected for SAT to avoid
convergence associated with models having similar average
ocean temperatures. The RMSE independence scalings de-
rived from the nine predictors in DJF and JJA are shown
alongside the scalings derived from global land SAT and
Northern Hemisphere SLP climatology predictors in Fig. 4.
RMSE independence scalings for each member of the ALL
ensemble are indicated by a thin horizontal colored line
within their respective modeling center groupings. For com-
parison, the RMSE independence scalings are superposed on
the 1/N modeling center scaling (gray bar).

In contrast to the nine-predictor RMSE scalings (Fig. 4a
and b), the global land SAT–Northern Hemisphere SLP
RMSE scaling allows for SMILE members to distinguish
themselves and to approach or exceed 1/N values (Fig. 4c).
In both DJF and JJA, no member of the ALL ensemble
has a nine-predictor RMSE scaling that exceeds 1/45. Inter-
member RMSE distances, shown in Fig. B2a and b, reflect
why this occurs; SMILE members can be as different from
one another as CMIP5 models are from each other. The nine-
predictor independence scaling is better able to distinguish
SMILE members from CMIP5 members in JJA than in DJF
(Fig. 4b). With the global land SAT and Northern Hemi-
sphere SLP CLIM predictors, SMILE members are clearly
closer to one another than to other models, with the excep-
tion of the CanESM2-LE. Because the CanESM2-LE is cre-
ated using the five CanESM2 contributions to CMIP5, the
SMILE and CMIP5 contributions cluster as a 55-member
CanESM2 ensemble within the ALL ensemble (Fig. 4c). In
terms of scaling, 55 CanESM2 members are scaled by an av-
erage of 1/55.0, while the CESM1.2.2-LE and the MPI-GE
are scaled by an average of 1/48.7 and 1/100.5, respectively
(Fig. 4c). In addition to the SMILEs, other IC ensembles
within CMIP5, such as the 10-member CSIRO-Mk3-6-0 en-
semble, also achieve a 1/N scaling. Individually represented
models, such as FGOALS-g2, are considered more indepen-

dent and are thus scaled by factors that approach unity. On
the other end of the dependence continuum, the four MPI-M
contributions to CMIP5 are identified to have a high degree
of similarity to the MPI-GE and are scaled accordingly by
factors exceeding 1/60.

To understand why large-scale, long-term CLIM predic-
tors are able to group SMILE members and set a degree
of dependence for CMIP5 members, we investigate where
each member falls in the global land SAT and Northern
Hemisphere SLP climatology predictor space in Fig. 5. Each
member is labeled either by color (SMILEs) or by model
name (CMIP5), and IC ensembles within CMIP5 are cir-
cled. Circling IC ensembles within CMIP5 is possible be-
cause, along with the SMILEs, the IC members also tend
to cluster. This phenomenon is in line with the assump-
tion that IC members are dependent entities; the two large-
scale, long-term CLIM predictors reflect this dependence.
Notable IC clusters include MIROC5 (three members) and
EC-EARTH (five members). The bifurcation in the GISS-E2-
H and GISS-E2-R ensembles reflects the p3 (top) vs. the p1
and p2 (bottom) perturbations used for different members.
CanESM2 CMIP5 members join the CanESM2-LE (as in-
dicated by Fig. 4c) and the MPI-ESM-LR contributions fall
near the MPI-GE.

The assumption that members from the same modeling
center are dependent entities, however, is not as clear cut
in the global land SAT and Northern Hemisphere SLP cli-
matology predictor space. GISS contributions share a re-
sponse (lower Northern Hemisphere average SLP and higher
global land average SAT), while the contributions from
CMCC, GFDL, and IPSL feature markedly different re-
sponses (Fig. 5). Another clustering feature present is that of
several separate clusters for a modeling center. This can be
seen for the NCAR modeling center grouping: CCSM4 and
CESM1-BGC form a cluster separate from both the CESM1-
CAM5 cluster and the CESM1.2.2-LE cluster. The NCAR
case illustrates that new models in a modeling center’s de-
velopment stream can be distinct from their predecessors
and should not necessarily be considered dependent based
on their shared name. On the other hand, there are also in-
stances in which models of different names are similar to
each other. Bcc-csm1-1 falls within the CCSM4-CESM1-
BGC cluster (Fig. 5), which suggests that with shared com-
ponents (Knutti, 2010), models can have similar responses
and be identified as more dependent than their name would
suggest. Ultimately, discrepancies between model name and
model response suggest that assigning each member a de-
gree of dependence is a useful way to handle the continuum
of dependence assumptions. Provided that care is taken to
select an appropriate set of predictors for independence scal-
ing, IC members cluster in an anticipatable way, while an
interplay between named and unnamed model dependence
remains.
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Figure 4. RMSE independence scalings (colored lines) of the SMILEs and CMIP5 ensemble members, grouped as listed in Table 1.
CESM1.2.2-LE members are shown in red, CanESM2-LE members are shown in yellow, and MPI-GE members are shown in green, while
the remainder of CMIP5 members are shown in blue. The 1/N modeling center scaling is shown by gray bars behind each grouping as
a point of reference. (a, b) The scalings computed from the nine predictors used in the original DJF and JJA RMSE distance weightings,
respectively. (c) The scalings computed from global land SAT and Northern Hemisphere SLP climatology predictors.

Figure 5. Scatter plot showing how ALL ensemble members distribute in the Northern Hemisphere SLP climatology and global land SAT
climatology predictor space. Members and IC ensembles within the CMIP5 ensemble (blue) are labeled by model name. The CESM1.2.2-LE
is indicated in red, the CanESM2-LE is indicated in yellow, and the MPI-GE is indicated in green, consistent with other figures.
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5 Conclusions

We find that the performance and independence weighting
scheme pioneered by Knutti et al. (2017) can be used to
incorporate regional climate information from three single-
member initial condition large ensembles into a CMIP5
multi-model ensemble and return a justifiably constrained
estimate of European regional end-of-century warming un-
certainty. The performance weighting, which accounts for an
ensemble member’s ability to reproduce selected aspects of
observed climate, is based on regional surface air temper-
ature, sea level pressure climatology, and interannual vari-
ability over two 20-year intervals during the historical period
(1950–1969 and 1990–2009) and a 50-year estimated resid-
ual thermodynamic SAT trend computed using a method of
dynamical adjustment (Deser et al., 2016). These predictors
highlight emergent relationships between past and future cli-
mate and aspects of climate that are important for a model
to historically simulate in order to realistically project fu-
ture warming to the definition of performance. The princi-
ple of emergent constraints underpins the choice to use the
estimated residual thermodynamic SAT trend over the SAT
trend, as the former is an estimate of a model-specific prop-
erty that can be compared with observations and the latter is
influenced by internal variability even on 50-year timescales.

Five different strategies based on the Knutti et al. (2017)
performance and independence weighting are assessed for
suitability of use in a CMIP5 and a combined CMIP5–
SMILE ALL ensemble. While the different strategies in-
troduce only modest distributional shifts (towards less end-
of-century warming than in the equal weighting case), they
imbue different meaning to the distribution. RCP8.5 SAT
change between 1990–2009 and 2080–2099 is projected
to be about 5–6 ◦C in both northern European winter and
Mediterranean summer when historical model performance
is considered. Equal and performance-weighted ALL distri-
butions are narrowed by a 50 %–82 % contribution from the
SMILEs, which is an outsize contribution from three models
to an ensemble comprised of 40 uniquely named models. The
high-performing, numerously represented MPI-GE receives
over 65 % of the total weight in the performance-weighted
DJF NEU end-of-century warming distribution, demonstrat-
ing that an independence scaling is necessary so no one
model defines the uncertainty range of a multi-model ensem-
ble regardless of its historical realism.

Three plausible dependence assumptions are made to ac-
count for model contribution issues in an ensemble com-
prised of both known (i.e., IC members) and unknown
(i.e., model component sharing) dependencies. By explicitly
defining IC members as dependent entities, SMILE contri-
butions drop to less than 10 % while maintaining a distribu-
tional shift tendency towards less end-of-century warming.
Taking the definition of dependence a step further by con-
sidering all members from the same modeling center and/or
development stream dependent introduces positive skewness

and a narrower interquartile range to the distributions now
containing 20 uniquely weighted entities. Finally, by ac-
knowledging that dependencies may not always be clearly
determinable a priori, the independence scaling based on
inter-member RMSE distances from the same nine predictors
used to determine performance allows for reasonable lev-
els of SMILE contribution to Mediterranean summer end-of-
century warming uncertainty. However, the high-performing
MPI-GE contributes approximately 40 % of the total weight
to the northern European winter distribution as a result of
predictor internal variability distinguishing SMILE members
as independent models.

The advantages of the RMSE-based independence scaling,
which include allowing for degrees of dependence, are sub-
verted somewhat by the inability of performance predictors
to distinguish known dependent entities (i.e., IC members)
from (presumed) independent ones. To address this issue,
we show that a set of two predictors, 60-year annual av-
erage global land SAT climatology and 60-year annual av-
erage Northern Hemisphere SLP climatology, is capable of
rendering an RMSE scaling of 1/N for SMILE members
while assigning a degree of dependence to the rest of CMIP5.
A notable achievement for these large-scale, long-term pre-
dictors is their ability to identify the CanESM2 members
from CMIP5 as being from the same model version as the
CanESM2-LE and scale the 55-member ensemble accord-
ingly. A deeper look into groupings in the global land SAT
and Northern Hemisphere SLP climatology predictor space
reveals clustering of IC ensembles within the CMIP5 en-
semble in addition to the SMILEs. MPI-ESM-MR and MPI-
ESM-LR contributions cluster near the MPI-GE, while the
NCAR model group separates into three distinct clusters con-
sistent with NCAR’s model development over time. The in-
terplay between model name and model response does ex-
hibit some complexity; models from the same center (i.e.,
GFDL) can have markedly different responses, and models
from different centers (bcc-csm1-1 and CCSM4) can have
similar responses. This suggests that assigning degrees of de-
pendence is a useful way to represent the information in an
ensemble of opportunity like CMIP5.

It is important to note that while the weighting has
a relatively straightforward functional form, it requires
application-specific sets of predictors and appropriate shape
parameters. Strategies to select optimal shape parameters
are discussed in Appendix B of this study, and we advise
that emergent predictor relationships be explored, as in Ap-
pendix C, to provide justification for the performance met-
ric. When defining model skill for performance, it is impor-
tant to carefully consider whether predictors are relevant to a
model’s ability to project the future target realistically. Dif-
ferent targets, such as hydrological changes, may require pre-
dictors to capture a more complex set of physical processes.
It is also important to assess RMSE distance to observations
of known dependent entities such as SMILEs to ensure that
internal variability in the selected set of predictors does not
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assign them skill of different orders of magnitude. Because
SMILE members had relatively similar RMSE distance to
observations over the nine original predictors, we did not re-
quire members of the SMILE to have identical performance
weights under the performance and RMSE case assumptions
evaluated. We do, however, see the merit in fixing IC mem-
ber performance to an ensemble average value to ensure that
model skill is appropriately assigned. We also recommend
that different sets of predictors be used for determining per-
formance weight and independence scaling to avoid down-
weighting independent models with historical climate that
converges to reality. Independence predictors should be fields
with minimal internal variability, such as large-scale, long-
term averages, and ideally fields that model developers do not
explicitly tune, such as absolute global temperature (Maurit-
sen et al., 2012; Hourdin et al., 2017).

We assess a relatively unconventional multi-model ensem-
ble in this study, which is comprised of 200 members from
3 models and only 88 members from the remaining 40 named
models. This is a deliberate choice made to test and improve
the independence scaling, as determining best practices for
representing uncertainty in a multi-model ensemble that in-
cludes initial condition ensemble members is necessary in
advance of CMIP6. Modeling centers are slated to submit
more ensemble members to the project than were submit-
ted to CMIP5 (Eyring et al., 2016; Stouffer et al., 2017).
For more conventional multi-model ensembles that include
just a few initial condition ensemble members amongst the
models, results may be less sensitive to choices underpin-
ning the independence scaling. When large ensembles are
included, however, it becomes clear that an independence
scaling that scales known dependencies appropriately (i.e.,
1/N for IC ensemble members), such as the RMSE global
predictor scaling presented here, is necessary. Such an in-
dependence scaling will be a useful tool with which to as-
sess uncertainty in the combined multi-model, multi-initial-
condition ensemble member CMIP6 ensemble.
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Appendix A: Dynamical adjustment

To obtain an estimated residual thermodynamic trend in SAT,
a method of dynamical adjustment based on constructed cir-
culation analogues is used (Deser et al., 2016; Lehner et al.,
2017; Merrifield et al., 2017; Guo et al., 2019). Dynami-
cal adjustment provides an empirically derived estimate of
the SAT trends induced by atmospheric circulation variabil-
ity; removal of this circulation-driven component from an
SAT record thus reveals an estimate of the SAT trend asso-
ciated with thermodynamic processes and radiative effects.
Dynamical adjustment relies on the ability to reconstruct a
monthly mean circulation field, which we represent with sea
level pressure (SLP) as in Deser et al. (2016), from a large
set of analogues. Here, SLP analogues are selected from 60
possible choices (from the period 1950–2010) excluding the
target month, and the method is therefore referred to as the
“leave-one-out” method of dynamical adjustment. SLP fields
in SMILE members, CMIP5 ensemble members, and the
observational estimates ERA-20C and NOAA-20C are con-
structed in this manner for target months in the 1950–2010
period. For model years 2011–2099, analogues are selected
from the entire 1950-2010 period. No notable trends in SLP
have been identified over this period in previous dynamical
adjustment studies (Deser et al., 2012, 2016; Lehner et al.,
2017).

It is important to acknowledge that because of the paucity
of analogue choices in leave-one-out dynamical adjustment,
the term “analogue” is a bit of a misnomer. The term evokes
the idea of a match, though in practice, analogues may not
closely resemble the target. For convenience, we will con-
tinue to refer to the months used in target SLP construction
as analogues, but we do so with the understanding that target
and analogue patterns may differ over the selection domain.

A month is determined to be an analogue of the target
month if the Euclidean distance between target and analogue
SLP is small. Euclidean distance is computed at each grid
point and averaged over the European sector domain also
used for SLP predictors in the nine-predictor RMSE weight-
ings (25–90◦ N, 60◦W–100◦ E). This selection metric there-
fore does not require an analogue to match the target month
spatially over the whole domain. This is necessary because,
with 60 possible options, it is statistically unlikely that a “per-
fect” analogue will exist for a particular target month. The
study by van den Dool (1994) found that it would take on
the order of 1030 years to find two Northern Hemisphere cir-
culation patterns that match within observational uncertainty.
With this in mind, a smaller-than-hemispheric domain and an
iterative averaging scheme are employed to make the most
of the “imperfect” analogues available (Wallace et al., 2012;
Deser et al., 2014, 2016).

Once the Euclidean distances are determined, the 50 clos-
est SLP analogues are chosen, and the iterative process of
selecting 30 of 50 SLP analogues and optimally reconstruct-
ing a target SLP field Xh commences. The optimal recon-

struction of the target SLP is mathematically equivalent to
multivariate linear regression; each analogue is assigned a
weight (β) such that a weighted linear combination of ana-
logues produces a least-squares estimate of the target SLP.
β is computed through a singular value decomposition of
a column vector matrix Xc containing the 30 selected ana-
logues and can also be estimated through a Moore–Penrose
pseudo-inverse:

β =

[(
XTc Xc

)−1
XTc

]
Xh. (A1)

The analogue weighting scheme ensures that analogues
which are further from (closer to) the target, in a Euclidean
distance sense, contribute less (more) to the constructed SLP
field.

After the target SLP field is constructed, the β values de-
rived for each SLP analogue are applied to their correspond-
ing monthly averaged SAT fields. Prior to the application of
weights, a quadratic trend representing anthropogenic warm-
ing is removed from the SAT record at each point in space.
The purpose of this detrending is so that months picked from
the end of the record do not contribute higher SAT anoma-
lies simply because of the anthropogenically forced warmer
background climate, even if the SLP patterns are the same
(Lehner et al., 2017). Detrending strategies are further dis-
cussed in Deser et al. (2016). The weighted, detrended SAT
fields are then used to construct a dynamic SAT anomaly
field for the target month. SLP, which is representative of
low-level atmospheric circulation, and SAT are physically
related; SLP-derived weights are applied to SAT to empiri-
cally construct that relationship. Conceptually, dynamic SAT
anomalies are those that would occur given the attendant cir-
culation pattern. The second through fifth steps of dynamical
adjustment (selection of 30 of 50 SLP analogues, optimal
reconstruction of target SLP, and construction of dynamic
SAT) are then repeated 100 times, following Lehner et al.
(2017). The dynamic component of SAT in the target month
is the average of the 100 constructions. It is then subtracted
from SAT in the target month to find the residual thermo-
dynamic component of SAT, which is used as an estimate
of the regional SAT response to surface processes and radia-
tive forcing. The trend of the residual thermodynamic SAT
component is used as a predictor in this study; the trend is
computed at each land grid point in the predictor domain and
subsequently area-averaged.

Appendix B: Selecting σD and σS

Determining the shape parameters σD and σS is an important
step in the RMSE weighting process (Knutti et al., 2017).
σD can be set using a perfect model test, as described in
Lorenz et al. (2018). Here, a simplified perfect model test
is performed on a 47-member ensemble, which includes
only the first IC member from the SMILEs and each of
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the CMIP5 models ensembles (40 named models with an
additional four members from GISS-E2-R and GISS-E2-H
physics physics-version ensembles). This is done because
having multiple IC members (or a SMILE) in the ensemble
could bias the perfect model test, which is based on predict-
ing one member using a weighted distribution of the rest. We
use member 1 for each IC ensemble because, often, when
multiple IC members are available, the first member is se-
lected (e.g., Liu et al., 2012; Karlsson and Svensson, 2013;
Sillmann et al., 2013). During the perfect model test, each
member is assumed to be the “truth” once, and a weight-
ing is performed using the remaining members to predict the
“true” SAT change. RMSE distances (based on nine predic-
tors) are computed with respect to the truth for the remaining
members and used in the performance weighting functionwII

i

described in Sect. 3.2. The performance weights are com-
puted for σD values ranging between 0 and 2 (on 0.01 inter-
vals). For each σD , the weighted mean SAT change is com-
puted and compared to the true SAT change. The optimal σD
for each truth is chosen such that the difference between the
weighted mean SAT change and the true SAT change is min-
imized. In the few cases when the weighted mean exhibits
asymptotic behavior with no clear minimum difference prior
to σD = 2, the σD value is selected at the point at which
the leveling-off begins (as determined by the intersection be-
tween a threshold value and the weighted mean curve). For
the nine-predictor RMSE weightings, we set σD values to the
mean of the 47 optimal σD values computed during the per-
fect model test. It is important to note that this choice is ulti-
mately subjective, and further parameter sensitivity testing is
recommended in studies focused on model performance.

The RMSE distances between multi-model ensemble
members and observations (Di) are shown in Fig. B1. Mem-
bers of the ALL ensemble are plotted in ascending order
with the position of SMILE members indicated in red for
the CESM1.2.2-LE, in yellow for the CanESM2-LE, and in
green for the MPI-GE. In winter (Fig. B1a), distances be-
tween CMIP5 members and observations are distributed in a
positively skewed fashion, with the mode of the distribution
at approximately Di = 0.40 with a tail of larger Di values.
In contrast, CMIP5 distances in summer (Fig. B1b) are ap-
proximately normally distributed about a mean ofDi = 0.85.
The addition of the SMILEs to the distribution contributes to
both of these distributional tendencies. σD is set to 0.32 in
DJF and 0.4 in JJA in both the CMIP5 and ALL ensembles
to eliminate a degree of freedom of the method. Members
are more strongly weighted by performance in winter than in
summer due to the different distance distributions.
σS can be determined using IC ensembles present in the

multi-model ensemble, including SMILEs. The inclusion of
SMILE members in a multi-model ensemble emphasizes the
need for σS to be carefully selected, as SMILEs add redun-
dant information and the purpose of σS is to reduce the influ-
ence of redundant information. However, not all information
added by a SMILE is distinguishable from information in

other models in the nine predictor cases; inter-member dis-
tances in an initial condition ensemble can be as large as
inter-model distances in the multi-model ensemble (Fig. B2a
and b). Checking inter-member vs. inter-model distances is
an important first step in determining σS ; too much overlap
between the distributions can blur the line between known
dependent entities (IC members) and likely independent en-
tities (different models).

If σS is too small or too large, there are implications for the
nine-predictor RMSE-weighted ensemble mean and spread.
This sensitivity to σS is shown in Fig. B3. We assess the char-
acteristics of the nine-predictor RMSE-weighted CMIP5 dis-
tributions (Fig. B3a and bi) and RMSE-weighted ALL distri-
butions (Fig. B3a and bii) for different values of σS , varying
from 0.05 to 0.8.

For small σS , only members that are very close to each
other in predictor space are considered dependent; most
members of the multi-model ensemble will therefore be con-
sidered independent. In this case, the RMSE weighting tends
toward the performance-weighted approach. If σS is set on
the order of the largest inter-member distances in a SMILE
(σS ≥∼ 0.5), few members of the multi-model ensemble will
be considered independent from each other, despite com-
ing from different models. The systematic scaling of per-
formance weights in the ensemble at large tends to also
lead to a narrowing of uncertainty. Only members that are
very far from other members will not have a scaled per-
formance weight, but these “independent” members tend to
also be far from observations and therefore have little per-
formance weight to begin with. For σS between approxi-
mately 0.2 and 0.4, uncertainty in the RMSE-weighted dis-
tributions increases in all but the JJA MED CMIP5 case.
The JJA MED CMIP5 distribution is relatively insensitive
to σS because 50 % of the RMSE distances between CMIP5
members are between 0.56 and 0.71 (Fig. B2b). For the
ALL distributions, the RMSE-weighted mean shifts up mod-
estly in DJF and down in JJA. In order to avoid an under-
estimate of uncertainty, either due to redundancy or from
down-weighting independent information, we propose that
σS should be set carefully. For the set of nine predictors, we
set σS based on the Sij distribution in IC ensembles present
within the multi-model ensemble. We compute the Sij within
the three SMILEs and set σS at 2 standard deviations below
the SMILE Sij mean value (Fig. B2). The three values are
then averaged. By this metric, DJF NEU σS is 0.26 and JJA
MED σS is 0.25.

Another more robust option, as discussed in the main text,
is to select a set of independence predictors that explic-
itly differentiate inter-IC-member distances from inter-model
distances. In this case, σS should not be set to 2 standard de-
viations below the SMILE Sij mean; rather, it should be set
to a value greater than all IC member Sij but less than inter-
model Sij (particularly for differently named models). For
the large-scale CLIM predictor set explored in Fig. 4, σS can
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be computed based on IC member inter-member distances as
described in Brunner et al. (2019); σS in this instance is 0.22.

Figure B1. RMSE distance Di , derived from nine predictors, between observations and the 288 members of the ALL ensemble – CMIP5
(blue)+CESM1.2.2-LE (red)+CanESM2-LE (yellow)+MPI-GE (green). DJF NEU distances are shown in (a), and JJA MED distances
are shown in (b).
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Figure B2. Distributions of RMSE distance (Sij ) within the SMILEs, the CESM1.2.2-LE (red), the CanESM2-LE (yellow), the MPI-GE
(green), and the CMIP5 ensemble (blue). The box element spans the 25th to 75th percentile of the distribution; the median Sij is indicated
by the horizontal line within the box. The whisker element spans the full range of the Sij distribution. The value of σS used for the weighting
is indicated by the dashed line. DJF NEU distances based on the nine predictors are shown in (a), JJA MED distances based on the nine
predictors are shown in (b), and distances based on annual global land SAT and Northern Hemisphere SLP climatology are shown in (c).
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Figure B3. The σS sensitivity of the nine-predictor RMSE weightings in Fig. 3; σS used for each weighting is indicated below each box
element. Box-and-whisker plots show the SAT change distribution under the RMSE independence scaling weighting assumption (1, (2080–
2099)–(1990–2009)) for the CMIP5 ensemble (i; blue) and ALL ensemble (ii; gray). The box element spans the 25th to 75th percentile of
the distribution; mean SAT change is indicated by the horizontal line within the box. The whisker element spans the 5th to 95th percentile.
DJF NEU SAT change is shown in (a), and JJA MED SAT change is shown (b).
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Appendix C: Emergent predictor relationships

In addition to relationships between past and future (esti-
mated residual thermodynamic) trends (Fig. 2), emergent re-
lationships among the remaining predictors we use to rep-
resent climate are shown in Figs. C1 and C2. Linear rela-
tionships are clear for climatological averages in both sea-
sons; multi-model ensemble member climatological biases
are more or less unchanged from past to future, with hot-
ter mean state climate than other members during the his-
torical period also tending to have hotter mean state cli-
mate than other members in the future. Similarly, the ten-
dency of domain-averaged SLP values to be and remain
lower or higher also persists into the future. This relation-
ship is explored spatially in Figs. C3 and C4. Mean states
within SMILEs tend to cluster together. With the exception
of JJA MED SLP climatology (Fig. C2b), the addition of the
SMILEs does not change the linear relationship found in the
CMIP5 multi-model ensemble.

For variability (standard deviation over the given period),
members of SMILEs differ as much from each other as
from other multi-model ensemble members in DJF (Fig. C1c
and d). In JJA (Fig. C2c and d), several members of the
CMIP5 multi-model ensemble have domain-averaged vari-
ability that falls outside the distribution of SMILE mem-
bers. The addition of the SMILEs to the CMIP5 multi-model
ensemble reduces correlations between historical and future
variability for SAT and SLP in both seasons. This is particu-
larly striking in JJA when the correlations tend to be due to
the CMIP5 multi-model ensemble outliers.

Because the SLP predictor domain has a larger spatial ex-
tent than the SAT predictor domains, we also assess spatial
patterns of climatological SLP, which average to the lowest
and highest domain-average values in the 1990–2009 clima-
tological period (Figs. C3 and C4). The “end-members” il-
lustrate the climatological emergent constraint relationship
seen in Figs. C1 and C2 in terms of pattern; that is impor-
tant for a field like SLP, which tends to feature dipoles on
basin and continental scales. For simplicity, we compare the
end-members to one observational estimate from ERA-20C.

In winter, multi-model ensemble members tend to feature
similar-to-observed spatial patterns of climatological SLP in
the predictor domain, with a low-pressure center over the
high-latitude North Atlantic and a region of high pressure
over the Eurasian continent (Fig. C3). For the member with
the lowest domain average, the difference arises from a fur-
ther extension of the low-pressure center across northern Eu-
rope and a weaker high-pressure center than observed, espe-
cially in the vicinity of the Tibetan Plateau (Fig. C3ii and v).
For the member with the highest domain average, the differ-
ence arises from high-pressure features over high-altitude re-
gions, such as Greenland and the Tibetan Plateau (Fig. C3iii
and vi).

In summer, members differ in spatial patterns of climato-
logical SLP in the predictor domain, though most feature a
high-pressure center over the subtropical North Atlantic and
lower pressure over the Eurasian continent seen in ERA-20C
(Fig. C4). The member with the lowest domain average fea-
tures the aforementioned spatial pattern but with a higher-
than-observed amplitude, i.e., both a higher North Atlantic
subtropical high-pressure center and a lower region of conti-
nental low pressure (Fig. C4ii and v). In contrast, the mem-
ber with the highest domain average has high pressure over
the entire Atlantic basin as well as over Greenland and the
Tibetan Plateau (Fig. C4iii and vi). Most importantly, in all
cases, the climatological behavior of the past continues into
in the future, which supports the primary tenet of an emer-
gent constraint.
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Figure C1. Predictor relationships in DJF comparing domain-averaged climate in two historical periods, (i) 1950–1969 and (ii) 1990–2009,
to a future period, 2080–2099, in all panels. Observational estimates in the respective historical periods are indicated with a solid vertical line
(ERA-20C SAT and SLP) and dashed vertical black line (BEST SAT and NOAA-20C SLP) in each panel. (a) NEU SAT climatology (◦C),
(b) SLP climatology averaged over the predictor region (hPa), (c) NEU SAT standard deviation (◦C), and (d) SLP standard deviation averaged
over the predictor region (hPa), each aggregated over the two historical periods, are eight of the nine predictors used to determine RMSE
member performance and independence in Fig. 3. Least-squares regression fits (solid lines) and R2 values computed solely for the CMIP5
output are shown in blue, and those computed for all output (CMIP5 and the three SMILEs) are shown in black.

Figure C2. As in Fig. C1, but for JJA and the MED region in (a) and (c).
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Figure C3. The spatial pattern of DJF SLP climatology for 1950–1969 (i–iii), 1990–2009 (iv–vi), and 2080–2099 (vii–viii). The ERA-20C
observational estimate of SLP climatology is shown in i and iv. The ensemble member with the lowest domain-average SLP climatology for
the 1990–2009 historical period is shown in ii, v, and vii. The ensemble member with the highest domain-average SLP climatology for the
1990–2009 period is shown in iii, vi, and viii.

Figure C4. As in Fig. C3, but for JJA SLP climatology.
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Data availability. CMIP5 data were obtained from https://
esgf-node.llnl.gov/projects/cmip5/ (last access: July 2019) (ESGF,
2019). The CESM1.2.2 large ensemble was generated at
ETH Zürich and is available upon request. The CanESM2
large ensemble was generated by Environment and Climate
Change Canada’s Canadian Centre for Climate Modelling
and Analysis and is available at http://open.canada.ca/data/en/
dataset/aa7b6823-fd1e-49ff-a6fb-68076a4a477c (last access: Au-
gust 2019) (Environment and Climate Change Canada, 2019). The
MPI Grand Ensemble was generated at the Max Planck Insti-
tute for Meteorology and is available at https://esgf-data.dkrz.de/
projects/mpi-ge/ (last access: August 2019) (Max Planck Insti-
tute for Meteorology, 2019). ERA-20C data are provided by the
ECMWF and were obtained from https://apps.ecmwf.int/datasets/
data/era20c-moda/levtype=sfc/type=an/ (last access: May 2019)
(ECMWF, 2019).

Code availability. The weighting protocol is available
as a Python package and can be obtained via GitHub
(https://doi.org/10.5281/zenodo.4028924) (Merrifield et al.,
2020) under a GPLv3.
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Knutti, R. and Sedláček, J.: Robustness and Uncertainties in the
New CMIP5 Climate Model Projections, Nat. Clim. Change, 3,
369–373, https://doi.org/10.1038/NCLIMATE1716, 2013.

Knutti, R., Abramowitz, G., Collins, M., Eyring, V., Gleckler, P.,
Hewitson, B., and Mearns, L.: Good Practice Guidance Paper
on Assessing and Combining Multi Model Climate Projections,
in: Meeting Report of the Intergovernmental Panel on Climate
Change Expert Meeting on Assessing and Combining Multi
Model Climate Projections, edited by: Stocker, T., Qin, D., Plat-
tner, G.-K., Tignor, M., and Midgley, P., IPCC Working Group I
Technical Support Unit, University of Bern, Bern, Switzerland,
2010a.

Knutti, R., Furrer, R., Tebaldi, C., Cermak, J., and Meehl,
G.: Challenges in Combining Projections from Mul-
tiple Climate Models, J. Climate, 23, 2739–2758,
https://doi.org/10.1175/2009JCLI3361.1, 2010b.

Knutti, R., Masson, D., and Gettelman, A.: Climate model geneal-
ogy: Generation CMIP5 and how we got there, Geophys. Res.
Lett., 40, 1194–1199, https://doi.org/10.1002/grl.50256, 2013.

Earth Syst. Dynam., 11, 807–834, 2020 https://doi.org/10.5194/esd-11-807-2020

https://doi.org/10.1002/qj.776
https://doi.org/10.1038/NCLIMATE1562
https://doi.org/10.1175/JCLI-D-13-00451.1
https://doi.org/10.1175/JCLI-D-14-00325.1
https://doi.org/10.1175/JCLI-D-15-0304.1
https://doi.org/10.1175/JCLI-D-15-0304.1
https://apps.ecmwf.int/datasets/data/era20c-moda/levtype=sfc/type=an/
https://apps.ecmwf.int/datasets/data/era20c-moda/levtype=sfc/type=an/
https://esgf-node.llnl.gov/projects/cmip5/
https://open.canada.ca/data/en/dataset/aa7b6823-fd1e-49ff-a6fb-68076a4a477c
https://open.canada.ca/data/en/dataset/aa7b6823-fd1e-49ff-a6fb-68076a4a477c
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1002/jame.20038
https://doi.org/10.1029/2018GL081316
https://doi.org/10.1175/1520-0442(1999)012<2327:TROWVF>2.0.CO;2
https://doi.org/10.1175/1520-0442(1999)012<2327:TROWVF>2.0.CO;2
https://doi.org/10.1175/2009BAMS2607.1
https://doi.org/10.1007/s00382-015-2806-8
https://doi.org/10.1007/s00382-015-2806-8
https://doi.org/10.5194/esd-9-135-2018
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1175/BAMS-D-12-00121.1
https://doi.org/10.1002/grl.50768
https://doi.org/10.1175/BAMS-D-13-00255.1
https://doi.org/10.1007/s10584-010-9800-2
https://doi.org/10.1038/NCLIMATE1716
https://doi.org/10.1175/2009JCLI3361.1
https://doi.org/10.1002/grl.50256


A. L. Merrifield et al.: An investigation of weighting schemes suitable for incorporating large ensembles 833
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