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Abstract. Groundwater is the largest store of freshwater on Earth after the cryosphere and provides a substantial
proportion of the water used for domestic, irrigation and industrial purposes. Knowledge of this essential resource
remains incomplete, in part, because of observational challenges of scale and accessibility. Here we examine a
14-year period (2002–2016) of Gravity Recovery and Climate Experiment (GRACE) observations to investigate
climate–groundwater dynamics of 14 tropical and sub-tropical aquifers selected from WHYMAP’s (Worldwide
Hydrogeological Mapping and Assessment Programme) 37 large aquifer systems of the world. GRACE-derived
changes in groundwater storage resolved using GRACE Jet Propulsion Laboratory (JPL) mascons and the Com-
munity Land Model’s land surface model are related to precipitation time series and regional-scale hydrogeology.
We show that aquifers in dryland environments exhibit long-term hydraulic memory through a strong correla-
tion between groundwater storage changes and annual precipitation anomalies integrated over the time series;
aquifers in humid environments show short-term memory through strong correlation with monthly precipitation.
This classification is consistent with estimates of groundwater response times calculated from the hydrogeolog-
ical properties of each system, with long (short) hydraulic memory associated with slow (rapid) response times.
The results suggest that groundwater systems in dryland environments may be less sensitive to seasonal climate
variability but vulnerable to long-term trends from which they will be slow to recover. In contrast, aquifers in
humid regions may be more sensitive to climate disturbances such as drought related to the El Niño–Southern
Oscillation but may also be relatively quick to recover. Exceptions to this general pattern are traced to human
interventions through groundwater abstraction. Hydraulic memory is an important factor in the management of
groundwater resources, particularly under climate change.

1 Introduction

The availability of freshwater is essential for sustaining hu-
man life, economic security and access to the benefits of a
wide range of ecosystem services (Taylor et al., 2013a). Af-
ter the cryosphere, groundwater is the second largest store of
freshwater on the planet, supplying 36 % of domestic wa-
ter, 42 % of irrigation for agriculture and 27 % of indus-
trial water use (Döll et al., 2012). Bidirectional flows be-

tween surface water and groundwater are fundamentally im-
portant to the ecology of semi-arid and arid regions (dry-
lands) where surface water often recharges groundwater and
baseflow from groundwater can sustain rivers and wetlands
in the absence of rainfall (Alley et al., 2002; de Graaf et
al., 2019). Climate change in which anthropogenic emissions
of greenhouse gases transform patterns of natural variabil-
ity, together with substantial socio-economic change, predi-
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cates that management of freshwater resources has and will
increasingly become a critical task (Famiglietti, 2014). In a
climate where it is broadly predicted that “wet gets wetter,
dry gets drier” (Trenberth, 2011), water storage at and be-
low the land surface will be a vital tool in enabling success-
ful adaptation to the changing global environment (Damkjaer
and Taylor, 2017; Wada, 2016).

Despite the importance of groundwater, there are consider-
able gaps in current knowledge and understanding (Güntner
et al., 2007). Direct observations of groundwater are sparse
in relation to its geographical scale so most global or re-
gional groundwater data are based on output from large-scale
models. These include global hydrological models (GHMs)
(Sood and Smakhtin, 2015) and land surface models (LSMs)
(Bierkens, 2015; Overgaard et al., 2006; Wood et al., 2011)
for which there are often insufficient data available to con-
strain or calibrate (Döll et al., 2016). Model simulation of
key processes such as soil hydrodynamics and groundwater
recharge is therefore based on theoretical frameworks rather
than field data (Scanlon et al., 2002). As a result, there is also
considerable uncertainty about climate–groundwater dynam-
ics. Recent work in this area has either focused on localised
observations of changes in groundwater storage (1GWS)
from piezometry (Cuthbert et al., 2019a) or occurred adja-
cent to large centres of population where human interven-
tion, through the extraction of groundwater by pumping, can
greatly influence observational measurements (Scanlon et
al., 2018). In the context of an ∼ 85 % increase in global
groundwater abstraction from 1979 to 2010 (Wada et al.,
2014), an understanding of climate–groundwater dynamics,
supported by large-scale observational data, is required to in-
form sustainable access to groundwater resources (Taylor et
al., 2009).

In response to the lack of in situ field observations, re-
mote sensing by satellite is increasingly being utilised to
expand the scope of observational data available to Earth
Sciences (Acker and Leptoukh, 2007). An important ad-
vance in the quality of global data for hydrological stud-
ies has come from the Gravity Recovery and Climate Ex-
periment (GRACE), a collaboration between the National
Aeronautics and Space Administration (NASA) in the USA
and the German Aerospace Centre (DLR) launched in
March 2002 (Tapley et al., 2004). Completed sets of ap-
proximately monthly measurements are used to derive the
changes in mass at the Earth’s surface, and from these data
mass fluxes can be extracted that directly relate to the hydro-
sphere. Over land, the flux is expressed as a change in total
water storage (1TWS) at a spatial resolution of ∼ 300 km
and with an expected accuracy of better than 2 cm equivalent
water height (EWH) (Tapley et al., 2004). GRACE ceased
operation due to battery failure in mid-2016 having created a
record of 163 monthly gravity solutions (Tapley et al., 2019).
Although GRACE operated for 10 years longer than antici-
pated at its launch, it is a relatively brief dataset in relation to
large-scale climate patterns impacting the global hydrologi-

cal system with frequencies of several years or decades (e.g.
Pacific Decadal Oscillation – PDO, Atlantic Multidecadal
Oscillation – AMO). Nevertheless, inter-annual periodicities
associated with the El Niño–Southern Oscillation (ENSO)
and the Antarctic Circumpolar Wave (ACW) have been de-
tected (Mémin et al., 2015; Ni et al., 2018; Phillips et al.,
2012).

Intrinsic parameters of GRACE data effectively define the
spatial and temporal dimensions of this study, but there are
additional constraints related to the derivation of1GWS data
from GRACE 1TWS that also need to be considered. The
sub-division of GRACE 1TWS into its component parts, in-
cluding 1GWS, requires the application of GHM or LSM
output that is itself subject to associated uncertainty, as al-
ready noted (Döll et al., 2014). It has been demonstrated
that there is a relatively poor correlation between GRACE
and GHMs and LSMs in the evaluation of 1TWS, with sig-
nificant discrepancies at the basic level of whether storage
trends are increasing or decreasing (Scanlon et al., 2018).
These findings have been confirmed with reference to re-
gional piezometric groundwater measurements from tropical
aquifers in Africa (Bonsor et al., 2018). Thus, the application
of GRACE data to 1GWS implies three distinct areas of un-
certainty: in the processing of the GRACE signal, accuracy of
GHM and LSM model projections and mutual consistency of
the observed (GRACE) and modelled (GHM and LSM) data
(Long et al., 2015).

This study investigates the spatio-temporal properties of
climate–groundwater dynamics using a subset of the 37 large
aquifer systems of the world (LASW) as defined by the
Worldwide Hydrogeological Mapping and Assessment Pro-
gramme (WHYMAP) (Anon, 2008) and shown in Fig. S1
in the Supplement. This subset comprises aquifers that
lie broadly within the tropics and sub-tropics where cli-
mate variability is mostly defined by rainfall (Shepherd,
2014). The 14 aquifers selected are listed in Table 1, to-
gether with their key characteristics including aridity in-
dex (AI) calculated from the Consultative Group for Inter-
national Agriculture Research’s Consortium for Spatial In-
formation (CGIAR-CSI) Global Aridity Index dataset (Tra-
bucco and Zomer, 2019) shown in Fig. 1. Following the work
of Shamsudduha and Taylor (2020), the groundwater storage
response to regional climate variability for these 14 large-
scale aquifer systems is investigated using 1GWS data ex-
tracted from the whole of the available GRACE 1TWS time
series (August 2002–July 2016), together with climate data
that are defined by the areal extent of each of the aquifer sys-
tems.

Several studies have used GRACE data to examine stor-
age changes within a particular groundwater (GW) system
(e.g. Becker et al., 2010; Bonsor et al., 2018; Chen et al.,
2010, 2016; Henry et al., 2011; Z. Huang et al., 2015; Ramil-
lien et al., 2014; Shamsudduha et al., 2012, 2017; Tiwari et
al., 2009; Xavier et al., 2010; Yeh et al., 2006). Here, we ex-
amine the dynamics of climate–groundwater interactions in-
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Figure 1. The 14 selected world large-scale aquifers (the study aquifers) overlaid on the CGIAR-CSI Global Aridity Index dataset (Trabucco
and Zomer, 2019).

ferred from the underlying patterns of large-scale 1GWS in
response to extremes of precipitation. We find that hydraulic
memory (HM) is a key component in the classification of
groundwater responses to climate variability. We then seek
to reconcile the results with reference to the physical charac-
teristics of individual aquifer systems (Cuthbert et al., 2019b)
whilst accounting for anomalous responses in 1GWS to cli-
mate variability.

2 Methods

2.1 GWS derived from GRACE data

Mass fluxes relating to the hydrosphere contained in the
GRACE land-signal measurement of changes in the Earth’s
gravitational field are defined as 1TWS. In order to obtain
information relating specifically to groundwater, this signal
is separated into the component parts that comprise TWS,
generally represented as

1TWS=1GWS+1SWS+1SMS+1SNS, (1)

where SWS is surface water storage, SMS is soil moisture
storage and SNS is snow-water equivalent storage.1GWS is
then derived from 1TWS according to the following equa-
tion:

1GWS=1TWS− (1SWS+1SMS+1SNS). (2)

The locations of the 14 aquifers are outside areas where
changes in snow-water equivalent substantially impact
1TWS (Getirana et al., 2017). 1SNS can consequently be
omitted so that Eq. (2) can be rewritten for the purposes of
this particular study as

1GWS=1TWS− (1SWS+1SMS). (3)

Since GRACE started transmitting, several solutions have
been developed for analysing and producing GRACE1TWS

data to increasing levels of accuracy with the intention that
the data be readily and freely available for research (Lan-
derer and Swenson, 2012). In this instance, three different
products were drawn from Shamsudduha and Taylor (2020),
two of which are spherical harmonic (SH) solutions com-
prising CSR Land (version RL05.DSTvSCS1409) from the
Centre for Space Research (CSR) at the University of Texas
at Austin and CNES/GRGS (version RL03-v1) from the
French Centre National d’Etudes Spatiale (CNES) and the
Groupe de Recherche de Géodésie Spatiale (GRGS) and
one of which is JPL-mascon (version RL05M 1.MSCNv01)
from the Jet Propulsion Laboratory (JPL) NASA. To derive
1TWS, all GRACE solutions require additional processing
that includes corrections for glacial isostatic rebound and
atmospheric mass variation (Landerer and Swenson, 2012).
SH solutions also require spatial filtering (or “de-striping”),
whereas JPL-mascon does not as it directly converts the
GRACE signal into mass concentration blocks (mascons),
rendering monthly gravitational fields directly as 3◦× 3◦

gridded spatial components to reduce errors (Watkins et al.,
2015).

On inspection, the divergence between the three 1TWS
datasets was significant when summed over the time series.
The relatively large coefficient of variance, −104 %, even
though derived from a small sample size, calls into ques-
tion the use of an ensemble mean for this study. Such an ap-
proach may be appropriate for the use of SH products alone
(Sakumura et al., 2014), but it is preferable not to combine
SH products and mascons (Felix W. Landerer, personal com-
munication, 2019). Consequently we rely solely on the JPL-
mascon dataset possessing a better signal-to-noise ratio and
potentially less error (Scanlon et al., 2016; Watkins et al.,
2015; Xie et al., 2018). The employed JPL-mascon dataset
has been spatially sampled at a 0.5◦ grid using dimension-
less scaling factors provided as 0.5◦× 0.5◦ bins derived from
the CLM4.0 LSM (Long et al., 2015; Wiese et al., 2016).
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Table 1. Characteristics of the 14 aquifer systems selected for the study according to the WHYMAP and CGIAR-CSI databases with statistics
giving (L to R): total number of resident population, aquifer area, proportion of groundwater-fed irrigation, mean aridity index classification
(Trabucco and Zomer, 2019), mean annual rainfall and mean variability in annual rainfall.

WHYMAP Aquifer Continent Population Aquifer Proportion of Climate Mean Rainfall
aquifer name (millions) area irrigation zone (2002–2016) variability
number (km2) GW fed (%) based on annual (%)

aridity precipitation
index (mm)

5 Senegal– Africa 17.77 295 k 1.0 Semi-arid 540 14.6
Mauritanian
Basin

8 Umm Ruwaba Africa 10.52 509 k 0.0 Semi-arid 789 10.7
aquifer

10 Congo Basin Africa 34.74 1.49 m 0.0 Humid 1566 5.6

11 Upper Kalahari– Africa 6.02 1.00 m 0.1 Semi-arid 819 10.0
Cavelai–
Zambezi Basin

13 Karoo Basin Africa 14.53 568 k 2.1 Semi-arid 479 17.6

16 California North 8.10 71 k 57.8 Semi-arid 515 32.0
Central Valley America
aquifer system

19 Amazon Basin South 8.93 2.28 m 1.0 Humid 2505 8.3
America

20 Maranhão South 10.81 593 k 32.6 Humid 1502 15.7
Basin America

21 Guarani aquifer South 47.84 1.83 m 20.5 Humid 1450 10.6
(Parana Basin) America

23 Indus River Asia 155.85 308 k 31.0 Arid 375 16.2
Basin

24 Ganges– Asia 596.44 616 k 55.8 Humid 1391 12.1
Brahmaputra
Basin

29 North China Asia 336.70 439 k 37.1 Dry sub- 826 10.0
Plain aquifer humid
system

36 Great Artesian Australia 0.20 1.77 m 0.9 Arid 444 28.9
Basin

37 Canning Basin Australia 0.01 433 k 0.4 Arid 443 21.2

GRACE 1TWS is not a time-invariant measure (Wahr et al.,
1998), and in the standard datasets all anomalies are given
with respect to a baseline which is the mean over the period
January 2004 to December 2009 (JPL NASA, 2019). How-
ever, we examine the completed available GRACE 1TWS
time series with respect to climate anomalies over the con-
sistent timeframe of the entire series. Consequently, the em-
ployed JPL-mascon 1TWS dataset has been rescaled with
respect to a time mean taken over the whole period of

GRACE operation (August 2002–July 2016), which is the
study reference period (SRP) (JPL NASA, 2019).

As set out in Eq. (3), datasets for 1SMS and 1SWS de-
rived from LSMs are required to determine 1GWS from
1TWS since observational data at the spatio-temporal scales
of this study do not exist. Datasets for the 14 aquifer sys-
tems were drawn from NASA’s Global Land Data Assimila-
tion System (GLDAS) (Rodell et al., 2004) comprising the
output from four different LSMs (Shamsudduha and Taylor,

Earth Syst. Dynam., 11, 775–791, 2020 https://doi.org/10.5194/esd-11-775-2020



S. Opie et al.: Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory 779

2020): the Common (Community) Land Model (CLM, ver-
sion 2.0), Noah (version 2.7.1), the Variable Infiltration Ca-
pacity (VIC) model (version 1.0) and Mosaic (version 1.0)
(Rui and Beaudoing, 2019). As with 1TWS, analysis of the
four LSM datasets for 1SWS+1SMS shows that their di-
vergence summed over the entire time series is substantial,
with a coefficient of variance of 258 %, suggesting that a
LSM-ensemble mean approach may also not be appropriate
for this analysis even given the restricted sample size. Fur-
ther, the inter- and intra-model variability of 1SWS in the
LSM datasets , assessed as surface runoff (e.g. Shamsudduha
and Taylor, 2020; Thomas et al., 2017), is much less substan-
tial than that of 1SMS (inter-model coefficient of variance
378 %). In the absence of consideration of 1SWS, ground-
water recharge is primarily determined by the effect of evap-
otranspiration on moisture in the soil zone (Long and Mahler,
2013). Therefore, for this study, the modelling of 1SMS is a
key determinant of the outcomes for1GWS computed using
Eq. (3) (de Vries and Simmers, 2002). Modelled soil pro-
files vary substantially in each of the four LSMs ranging in
depth from 3.5 m (Mosaic) to 1.9 m (VIC) and, in vertical
layers, from 10 m (CLM) to 3 m (VIC & Mosaic) (Rodell et
al., 2004). CLM 2.0 (Bonan et al., 2002; Dai et al., 2003),
with 3.4 m depth and 10 vertical layers, features the most
well-developed soil model (Scanlon et al., 2018) and has
been shown to perform well in comparative testing (Scan-
lon et al., 2018; Spennemann et al., 2014). In addition, CLM
has demonstrated appropriate variability in initial ensemble
model runs undertaken here, meaning that 1SMS is almost
always less than the magnitude of 1TWS, thereby ensuring
that1GWS estimates derived from Eq. (3) are not arbitrarily
high or low (Shamsudduha and Taylor, 2020). Therefore, this
study employs a single model, CLM, for 1SMS and 1SWS
rather than adopting a LSM ensemble mean approach.

2.2 Climatology

Individual aquifer system shapefiles from the WHYMAP
LASW were prepared as ASCII files and uploaded to KNMI
Climate Explorer (KNMI Climate Explorer, 2018). This al-
lowed a range of climate data to be extracted for the precise
spatial boundaries of each system. In particular, precipita-
tion (PCP) data from the CRU TS4.03 dataset at 0.5◦ res-
olution (Climate Research Unit, University of East Anglia,
2019) were obtained, together with anomalies (PCPA) nor-
malised for the SRP (2002–2016). The CRU TS4.03 datasets,
together with the 1GWS derived from JPL-mascon 1TWS
and CLM 2.01SMS and1SWS, in accordance with Eq. (3),
were used to create time series analyses to explore correla-
tions over different time and volume components through in-
tegration. In this respect, the use of “annual” in this study
implies the appropriate hydrological year (HY).

In order to calibrate the time series for each aquifer system
prior to further analysis, the lag between monthly PCP, as the
primary climate–groundwater index, and monthly GRACE

1TWS was set by maximising the Pearson correlation coef-
ficient (PCC) between the two datasets, validated by point-
wise verification of alignment of the time series. In the ma-
jority of cases, this comparison showed 1TWS lagging PCP
by 2 months. The lag for the PCPA time series were set in
the same way with relation to 1GWS but with the already
determined PCP time series lag set as a minimum. In the
case of all aquifer systems except for the Congo, Canning
and Indus River basins, this procedure resulted in a consis-
tent lag being applied to all of the time series investigations
of each aquifer. Initial investigations also established that
only relatively weak first-order correlations exist between
1TWS and other monthly observational climate data such as
the self-calibrating Palmer Drought Severity Index (PDSI-sc)
(Wells et al., 2004) and mean temperature anomalies (CPC
GHCN/CAMS t2m analysis) (Fan and van den Dool, 2008).
By a comparison with both these measures, it appeared that
PCPA carried a stronger climate variability signal due to the
tropical or sub-tropical location of the selected aquifers (Al-
lan et al., 2010; Shepherd, 2014). An analysis was then con-
ducted to test for correlations between1GWS and a series of
measures of precipitation. Three separate time series of pre-
cipitation were developed to examine the temporal response
of the study LASW with respect to the process by which pre-
cipitation at the land surface contributes to 1GWS.

1. PCP equals monthly precipitation.

2. PCPA equals monthly precipitation anomalies with re-
spect to the consistently applied study reference period
time-mean baseline, 2002–2016.

3.
∫

PCPA equals cumulative monthly rainfall anomalies
derived by integrating the PCPA time series.

These monthly series were also summed to provide annual
time series for each aquifer system. Correlation was mea-
sured using the PCC with statistical significance determined
by a t test with α = 0.05 (Spearman, 1904). In addition,
as previously stated, the CGIAR-CSI Global Aridity Index
dataset (Trabucco and Zomer, 2019) was obtained, and a nu-
merical AI for each aquifer was extracted as a spatial mean
value using quantum geographic information system (QGIS).
AI was used to place each aquifer into the climate zone clas-
sification specified by the dataset as set out in Table 1. Of
the climate zones relating to the 14 aquifer systems, three are
arid, five are semi-arid and one is dry semi-humid, giving
nine in total in dryland zones (Corvalán et al., 2005), and
five are humid.

2.3 Hydraulic memory

In using cumulative rainfall anomalies, this study invokes the
concept of system memory (Weber and Stewart, 2004). Sev-
eral studies have considered the question of hydraulic or hy-
drologic memory, as it impacts both soil moisture, includ-
ing land–atmosphere dynamics (Castro et al., 2009; Lo and
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Famiglietti, 2010; Wu et al., 2002), and groundwater (Cur-
rell et al., 2016; Cuthbert et al., 2019b; Güntner et al., 2007;
Rodell and Famiglietti, 2001). Central to the definition of this
“memory” is that it represents the time taken for a system
to re-equilibrate following a change in boundary conditions
(Downing et al., 1974). In the case of an aquifer system, ap-
proximated to a one-dimensional flow of uniform diffusivity,
the groundwater response time (GRT) is given by Eq. (4):

GRT= L2S/βT , (4)

where L is a measure of the scale of the system, S is the
storativity, β is a dimensionless constant and T is transmis-
sivity. Qualitatively, Eq. (4) implies that long response times
are characterised by large-scale systems and/or low hydraulic
diffusivity (i.e. combination of high S and low T ) (e.g. Kooi
and Groen, 2003). An alternative approach to quantifying
memory may be needed in more complex – and realistic –
multidimensional flow situations (see Cuthbert et al., 2019b).
Nevertheless, Eq. (4) still provides a useful order of mag-
nitude approximation. Here, it is helpful to consider the re-
sponse time as a delay between system input and system out-
put whereby the output state H , at time t , is given by

H (t)=

t∫
−∞

p(τ )θ (t − τ )dτ, (5)

where p(τ ) is the input state or function at time τ , (t − τ ) is
the delay between output and input, and θ is an impulse
response function (IRF), also known as a transfer function
(Long and Mahler, 2013). The IRF is a multi-parameter func-
tion that is intended to model the properties of the system so
that the output of the IRF determines the time t at which
the state H is reached. The hydraulic memory is quantified
by the length of time that the effect of the input persists in
the system. As the IRF is commonly exponential, making
the equilibrium state asymptotic, system memory can be de-
fined as the time interval at which the IRF is 95 % complete.
This approach has been successfully applied to modelling
aquifer responses to precipitation validated by piezometry
in both the USA (Long and Mahler, 2013) and the Nether-
lands (von Asmuth and Knotters, 2004). Alternatively, sys-
tem memory may be defined as the length of time taken for
the effect of the anomalous input to decay to 1/e of its start-
ing value when this can be explicitly measured (Cuthbert et
al., 2019b; Lo and Famiglietti, 2010). In relation to Eq. (5),
chosen precipitation measures are p(τ ) input functions, and
1GWS represents H (t), the output measure. The time step
τ for each of the precipitation time series used is as shown
in Table 2. Correlation between 1GWS (output) and a par-
ticular precipitation dataset (input) can be considered to be
a measure of the persistence of the effect of that input inte-
grated over the time step. The degree of correlation between
1GWS and annual

∫
PCPA is thus indicative of the duration

of HM in the aquifer system.

2.4 Regional-scale hydrogeology

In an exploration of climate–groundwater dynamics using
GRACE data, the lack of direct physical observational data
means that it is necessary to demonstrate that results are
not simply artefacts of modelling and signal processing
(Rodell et al., 2009). The role of hydrogeology in determin-
ing groundwater dynamics is widely acknowledged (Befus
et al., 2017; Cuthbert et al., 2019b; de Vries and Simmers,
2002; van Lanen et al., 2013). Here, we seek to validate re-
sults inferred from GRACE data with reference to the phys-
ical characteristics of specific aquifer systems. In order to
categorise the hydrogeology of each aquifer system, a num-
ber of available global datasets were sourced as raster files
and interrogated in QGIS using the aquifer vector files from
WHYMAP LASW. Examined datasets include the follow-
ing:

1. groundwater response time (GRT) (Cuthbert et al.,
2019b);

2. hydraulic conductivity (K) and porosity (8) GH-
LYMPS high-resolution maps (Gleeson et al., 2014);

3. water table depth (WTD) (Fan et al., 2013).

As defined above, the GRT is a temporal measure of the
latency of aquifer systems that is derived from their scale
and physical properties via Eq. (4). This measure relies on
the other datasets listed for its calculation (Cuthbert et al.,
2019b). K and 8 are high-resolution datasets derived from
recently developed lithological maps of the Earth’s surface
(Hartmann and Moosdorf, 2012) and their computation uses
established geological parameters (Gleeson et al., 2014).
However, K is based on permeability mapping from hy-
drolithologies that have a standard deviation of ∼ 2 orders
of magnitude (Gleeson et al., 2011), and this variance under-
lies the uncertainty in each of these datasets used. WTD is
a 30 arcsec (∼ 1 km) resolution dataset compiled from avail-
able observational data extended by modelled interpolation
with both of these data sources being subject to considerable
sampling bias and model uncertainty respectively (Fan et al.,
2013). All of these datasets are global and derived from com-
binations of observations and modelled data.

3 Results

The main results for each aquifer system are given as a
monthly time series of 1TWS and 1GWS vs. PCP and an
annual time series of 1GWS vs. PCPA and

∫
PCPA, shown

as Fig. 2a–r for dryland systems and Fig. 3a–j for humid sys-
tems. The outcomes are summarised in Table 3. As a gen-
eral result, all time series plots show a qualitative relation-
ship between 1GWS and PCP that exhibits interesting and
potentially important spatio-temporal variations. The quan-
titative results show that for 1GWS there is a strong cor-
relation with annual

∫
PCPA for aquifer systems in dryland
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Table 2. The time step τ for each of the precipitation time series investigated in the study.

Time series Time step τ

PCP and PCPA 1 month
PCPA (HY) 1 year∫

PCPA (HY) 1 year≤ τ ≤ 14 years (upper limit set by length of dataset)

environments, whereas in humid environments, the strongest
correlation is with monthly PCP. Three aquifers – Guarani
aquifer, Indus River Basin and Canning Basin – do not fol-
low this general classification, and anomalies are discussed
further in Sect. 4.3 below and in the Supplement.

GRT, shown in Fig. 4, is a measure of the time it takes for
an aquifer system to equilibrate after a change in boundary
conditions, as discussed above. For the 14 studied aquifers,
it extends from centennial to millennial timescales as indi-
cated from median values reported in Tables 4 and S1 (in the
Supplement). For humid aquifers, GRT ranges from 100 to
350 years, whereas for dryland systems GRT then escalates
to values well in excess of 1,000 years for semi-arid and arid
basins; the sub-humid North China Plain aquifer has a GRT
of ∼ 550 years. This order of magnitude point of transition
can be identified as the threshold between sensitive (rapid)
and insensitive (slow) aquifer response times (Cuthbert et al.,
2019b), which show a broad global relationship with arid-
ity. This observation helps to explain groundwater storage
responses to climate variability through the memory of the
aquifer system defined by both physical characteristics and
geographical location. The role of HM is discussed further in
Sect. 4.1.

Presented results represent the outcome of a detailed anal-
ysis of the available datasets and, as such, contain impor-
tant assumptions that need to be acknowledged here. Firstly,
the allocation of lag time has been done on a “best fit to the
1TWS data” basis. It is therefore not derived from analysis
of intrinsic physical characteristics of the aquifer systems but
is consistent with the range of theoretical values derived from
hydrodynamic first principles that anticipate a maximum lag
time of 3 months for systems with a large GRT (Townley,
1995), as has been observed by Ahmed et al. (2011). Time
lags have been tested for consistency through the alignment
of specific events in the various time series (von Storch and
Zwiers, 2001). The evident anomaly of a 7-month lag time
for the Karoo Basin is discussed in the Supplement. Sec-
ondly, the restricted duration of the GRACE dataset should
be acknowledged, particularly with regard to the annual time
series. In mitigation, statistical significance appears to be ro-
bust when tested using the methods described by Zwiers and
von Storch (Zwiers and von Storch, 1995), and the use of
PCPA and

∫
PCPA datasets is designed to minimise the effect

of seasonal climate and short-term trends in 1GWS (Crad-
dock, 1965). Thirdly, the use of Eq. (3) to derive 1GWS
from GRACE 1TWS data represents a temporal and spa-

tial approximation in representing sub-surface hydrological
processes. Simply put, all water below the soil zone neither
necessarily comprises GWS nor will it all eventually reach
GWS due to lateral flow processes. However, on the scale of
the aquifer systems considered here, the use of Eq. (3) is a
reasonable approximation (de Vries and Simmers, 2002).

4 Discussion

4.1 Role of hydraulic memory

A key finding of this study is that GRACE-derived 1GWS
correlates most strongly with annual

∫
PCPA for large-scale

aquifers in dryland environments of the tropics and sub-
tropics, whereas GRACE-derived 1GWS correlates most
strongly with monthly PCP in humid environments at these
latitudes. Further, we show that there is correspondence be-
tween the annual

∫
PCPA vs. 1GWS correlations and GRTs

of large-scale aquifer systems (Table 4); the latter is a mea-
sure derived in accordance with Eq. (4) (Cuthbert et al.,
2019b). HM ultimately derives from the physical proper-
ties of the saturated portion of the aquifer system (Townley,
1995), and system memory as measured by Eq. (5) is rep-
resentative of the physical properties of an aquifer system
and its climate. Von Asmuth and Knotters (2004) use four
parameters to describe groundwater dynamics in their trans-
fer function (τ in Eq. 5) that they argue represents a more
accurate description of the physical system than previously
used parametric methods (von Asmuth and Knotters, 2004).
Further, their description of groundwater dynamics is capa-
ble of accommodating non-stationary elements such as cli-
mate change and groundwater abstraction (von Asmuth and
Knotters, 2004). HM as measured by Eq. (5) is therefore rep-
resentative of both spatial and temporal variability in aquifer
systems, but HM itself can vary spatio-temporally. Indeed the
response time to a given boundary change can vary according
to the physical circumstances, with persistence lasting from
months to hundreds of thousands of years (Cuthbert et al.,
2019b).

In this study, the GRACE dataset is not long enough to
allow detailed IRF modelling of aquifer systems based on
1GWS data, which would require an observational record
longer than the system memory (Long and Mahler, 2013). An
extended GRACE series, together with reduced uncertainty
in the permeability dataset from which GRT is derived, may
generate closer numerical matches between GRT (Eq. 4) and
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Figure 2.

HM as measured by the method of this study (Eq. 5). Never-
theless, we show that aquifer responses to anomalous precip-
itation, discussed below, exhibit long HM in dryland environ-
ments and relatively short HM in humid environments. The
correspondence with GRT extends the classification to two
broad categories: dryland environment/long HM/slow GRT
and humid environment/short HM/rapid GRT. Note that these
categories represent a simplification of the correspondence
between HM derived from the study datasets and GRT, which
in fact exhibits a spectrum in which Umm Ruwaba (dryland),
Congo Basin and Maranhão (both humid) occupy an inter-
mediate position in terms of the correlation between 1GWS

and annual
∫

PCPA, as can be seen in Table 3. Aquifers in
humid environments, with the exception of the Congo Basin,
generally exhibit less HM in this study than expected from
GRT values. These humid aquifers, as can be seen in Fig. 4,
have some of their area with GRTs in the order of years
to tens of years, perhaps meaning that a disproportionate
amount of groundwater processes may be moving through
these lower GRT areas. This may explain why humid regions
have less HM overall than is implied by their median GRT.
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Figure 2. Monthly 1TWS and 1GWS vs. PCP and annual 1GWS vs.
∫

PCPA time series for each of the dryland climate zone aquifer
systems, as labelled. Systems are ordered by decreasing PCC for annual 1GWS vs.

∫
PCPA. All time series are plotted to the aquifer system

lag as set out in Table 3, where 1TWS (1GWS) lags PCP (PCPA) by the specified number of months. Y -axis units are equivalent water
height (EWH) in centimetres. Note the variation in the y-axis scales. Seven of the annual

∫
PCPA data series have been scaled by a factor of

10 for clarity where indicated.

4.2 Aquifer responses to anomalous precipitation

The annual time series of1GWS vs.
∫

PCPA for each aquifer
have been examined to identify years in which the maxi-
mum annual increase in 1GWS occurred, as identified by
the steepest positive gradient of the 1GWS line (Table 5).
These years of extreme recharge, inferred from the increase
in 1GWS, are then further categorised by whether (1) prior
to the event

∫
PCPA was negative, indicating anomalously

dry conditions when soil moisture deficits (SMDs) are likely
to be widespread, and (2) the

∫
PCPA is concurrently shift-

ing from a negative to positive cumulative anomaly associ-
ated with an extreme rainfall event. Finally, the NINO3.4 in-
dex for 2002–2016 (B. Huang et al., 2015) has been exam-
ined (KNMI Climate Explorer, 2018) to indicate the state of
ENSO, the dominant control on equatorial precipitation, at

the time of the recharge. Nearly all recharge events in dry-
land aquifer systems take place at a time of negative

∫
PCPA

(likely SMD) with most coinciding with extreme rainfall
as recently observed in a pan-African study by Cuthbert et
al. (2019a). Extreme recharge events also generally coincide
with El Niño and La Niña events indicating an association
with large-scale modes of climate variability identified pre-
viously in tropical Africa (Kolusu et al., 2019; Taylor et al.,
2013a, b). In contrast, extreme recharge in humid aquifer
systems is not consistently associated with either negative∫

PCPA (likely SMD) or anomalous rainfall, though the latter
is correlated with ENSO state.
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Figure 3. Monthly 1TWS and 1GWS vs. PCP and annual 1GWS vs.
∫

PCPA time series for each of the humid climate zone aquifer
systems, as labelled. Systems are ordered by decreasing PCC for annual 1GWS vs.

∫
PCPA. All time series are plotted to the aquifer system

lag as set out in Table 3, where 1TWS lags PCP by the specified number of months. Y -axis units are equivalent water height (EWH)
in centimetres. Note the variation in the y-axis scales. The Congo Basin annual

∫
PCPA data series has been scaled by a factor of 10 for

clarity.

4.3 Anomalous trends in groundwater storage

Over the SRP determined by the availability of GRACE
data, six aquifer systems show a net decline in groundwa-
ter storage: California Central Valley, North China Plain,

and the Maranhão, Ganges, Indus and Canning basins. Of
these, two aquifer systems (Indus River and Canning basins)
do not show a strong correlation between 1GWS and any
of the precipitation data series. Table 4 shows that these
same two aquifers do not fit the general classification of the
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Figure 4. The 14 selected world large-scale aquifers (the study aquifers) overlaid on the GRT dataset (original dataset from Cuthbert et al.,
2019b).

14 aquifer systems into either dryland/slow GRT/long HM or
humid/rapid GRT/short HM systems. These anomalous char-
acteristics may reflect groundwater storage decline through
the escalation of groundwater abstraction referenced previ-
ously (Wada et al., 2014), and this hypothesis was tested
through further analysis as follows below and in further de-
tail in the Supplement.

The Indus River and Canning basins superficially present
similar stories of groundwater storage decline, yet contextual
analysis of their respective GRACE/CLM 1GWS datasets
reveals two quite different realities. The Indus River Basin
supports a population of∼ 210 million people (Immerzeel et
al., 2010), and its hydrology is strongly influenced by water
supply from upstream of the basin, much of it intended for ir-
rigation (Immerzeel et al., 2010). Surface water is augmented
by groundwater abstraction, which supplies∼ 31 % of the to-
tal irrigation demand, but it has been estimated that ∼ 84 %
of the groundwater abstracted returns to the aquifer system as
leakage from canals and intensively irrigated fields (Cheema
et al., 2014). A net calculation of these effects on 1GWS,
which is detailed in the Supplement, shows that the underly-
ing climate–groundwater dynamics are consistent with the
GRT derived from the regional-scale hydrogeology of the
aquifer system. In contrast, the Canning Basin is sparsely
populated and is not a centre of agriculture (Richey et al.,
2015). It is, however, a source of freshwater for iron-ore ex-
traction in adjacent areas (Western Australia Department of
Water, 2011), and very little of the abstracted groundwater
is returned to the aquifer system as its use in mining causes
it to become contaminated (Western Australia Department
of Water, 2013). This contaminated groundwater is subse-
quently disposed in the sea or evaporation ponds (Prosser et
al., 2011). The Canning Basin has a very slow GRT and,
situated in an arid environment, is subject to low rates of
groundwater recharge so that the physically sustainable rate
of groundwater abstraction is expected to be very low (Scan-

lon et al., 2006). The analysis of the Indus and Canning
basins is evidence of how groundwater depletion, which has
been reported elsewhere (e.g. Famiglietti, 2014; Rodell et
al., 2009), impacts relationships between precipitation and
1GWS.

5 Conclusions

Strong correlations are found between GRACE-derived an-
nual 1GWS and

∫
PCPA for large-scale aquifer systems in

dryland environments. This correlation is much weaker for
large-scale aquifer systems in humid zones where a stronger
correlation generally exists between monthly 1GWS and
monthly PCP. We propose that the correlation between an-
nual 1GWS and

∫
PCPA demonstrates the existence of hy-

draulic memory which is central to large-scale climate–
groundwater dynamics. For the studied aquifer systems, the
measure of correlation between annual 1GWS and

∫
PCPA

also shows very good correspondence with the groundwa-
ter response time, a measure of the hydraulic memory of
an aquifer system derived from its regional-scale hydroge-
ological and catchment properties (Cuthbert et al., 2019a).
The 14 aquifer systems can be broadly categorised into two
groups with each group listed in ascending order of ground-
water response time:

– Group 1: dryland/long HM/slow GRT: North China
Plain, upper Kalahari Basin, California Central Val-
ley, Umm Ruwaba, and the Indus River, Senegal–
Mauritanian, Karoo and Great Artesian (and Canning)
basins;

– Group 2: humid/short HM/rapid GRT: the Amazon,
Ganges, Congo, Guarani and Maranhão basins.

Aquifer systems in Group 1 may be less sensitive to seasonal
climate variability but also vulnerable to long-term trends
from which they will be slow to recover. In contrast, aquifers

https://doi.org/10.5194/esd-11-775-2020 Earth Syst. Dynam., 11, 775–791, 2020



786 S. Opie et al.: Climate–groundwater dynamics inferred from GRACE and the role of hydraulic memory

Table 3. Summary table of results from monthly and annual time series and aridity datasets. Summary of all correlation results from time
series datasets (Pearson correlation coefficient and lag in months in parentheses) and the aridity indices derived from the CGIAR-CSI Global
Aridity Index dataset (Trabucco and Zomer, 2019). 1GWS trend over SRP also shown. Results in italics fall below the t-test threshold.
Aquifers are ranked in order of Pearson correlation coefficient for annual

∫
PCPA vs. 1GWS. For each aquifer system, the strongest 1GWS

correlation with PCP or PCPA is shown in bold. Truncated time series results shown for two systems.

Aquifer Monthly Monthly Monthly Annual Monthly Annual Aridity Aridity GWS net
system PCP vs. PCP vs. PCPA vs. PCPA vs.

∫
PCPA vs.

∫
PCPA vs. class index change

1TWS 1GWS 1GWS 1GWS 1GWS 1GWS over SRP

Upper 0.64 (2) 0.47 (2) 0.13 (2) 0.22 (2) 0.67 (2) 0.88 (2) Semi- 0.42 Increasing
Kalahari arid

Karoo 0.15 (7) 0.25 (7) 0.07 (7) 0.21 (7) 0.71 (7) 0.88 (7) Semi- 0.28 Increasing
arid

Senegal 0.67 (2) 0.55 (2) 0.15 (2) 0.14 (2) 0.61 (2) 0.87 (2) Semi- 0.20 Increasing
arid

California 0.53 (2) 0.46 (2) 0.26 (2) 0.56 (2) 0.60 (2) 0.84 (2) Semi- 0.22 Decreasing
Central arid
Valley

Great 0.45 (2) 0.33 (2) 0.34 (2) 0.67 (2) 0.61 (2) 0.80 (2) Arid 0.18 Stable
Artesian

North China 0.34 (2) 0.22 (2) 0.18 (2) 0.26 (2) 0.65 (2) 0.80 (2) Dry 0.57 Decreasing
Plain sub-

humid

Umm 0.87 (2) 0.83 (2) 0.12 (2) 0.55 (2) 0.20 (2) 0.64 (2) Semi- 0.33 Stable
Ruwaba arid

Congo 0.67 (2) 0.67 (2) 0.11 (3) 0.43 (3) 0.27 (3) 0.62 (3) Humid 1.22 Stable

Maranhão 0.82 (2) 0.75 (2) 0.30 (2) 0.74 (2) 0.11 (2) 0.40 (2) Humid 0.91 Decreasing

Indus River 0.30 (1) 0.11 (1) 0.19 (3) 0.37 (3) 0.15 (3) 0.34 (3) Arid 0.16 Decreasing

Amazon 0.88 (2) 0.82 (2) 0.08 (2) –0.12 (2) 0.13 (2) 0.33 (2) Humid 1.99 Stable

Guarani 0.50 (3) 0.48 (3) 0.42 (3) 0.78 (3) 0.01 (3) 0.26 (3) Humid 0.90 Increasing

Ganges– 0.75 (2) 0.69 (2) 0.06 (2) 0.03 (2) 0.03 (2) 0.01 (2) Humid 0.86 Decreasing
Brahmaputra

Canning 0.35 (2) 0.19 (2) 0.15 (3) 0.26 (3) −0.15 (3) –0.01 (3) Arid 0.13 Decreasing

Indus River 0.42 (1) 0.15 (1) 0.21 (3) 0.73 (3) 0.34 (3) 0.89 (3) Arid 0.16 Decreasing
post 2008

Canning 0.41 (2) 0.24 (2) 0.22 (3) 0.61 (3) –0.02 (3) 0.24 (3) Arid 0.13 Decreasing
post 2006

in Group 2 may be more sensitive to seasonal climate distur-
bances such as ENSO-related drought but may also be rela-
tively quick to recover. These characteristics can be applied
to anticipate the groundwater response to present conditions
and to future pressures that can be expected from anthro-
pogenic climate change (Taylor et al., 2013a). The results
from the analysis of GRACE data are reconciled to regional-
scale hydrogeological conditions, which gives confidence in
their validity (Beven and Germann, 2013) albeit with the

caveat regarding the uncertainties inherent in all the datasets
used (Wilks, 2016).

The new GRACE Follow-On (GRACE-FO) project has
now been launched (Frappart and Ramillien, 2018; Tapley
et al., 2019), providing an opportunity to augment the exist-
ing GRACE 1TWS dataset without recourse to modelling
(Ahmed et al., 2019) and to give greater certainty in link-
ing climate–groundwater dynamics to decadal and longer
timescale climate systems including the Pacific Decadal
Oscillation and Atlantic Multidecadal Oscillation (Wunsch,
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Table 4. Relationship between aridity index, climate and regional-scale hydrogeology: data linking climate and regional-scale hydrogeology
to GW dynamics. Italicised results fall below t-test threshold.

Aquifer system Aridity Aridity Annual GRT:
classification index 1GWS log (GRT)∫

PCPA vs. (GRT in
(PCC) (lag in years)

months)

Indus River post 2008 Arid 0.16 0.89 (3) 3.96
Upper Kalahari Semi-arid 0.42 0.88 (2) 2.95
Karoo Semi-arid 0.28 0.88 (7) 5.74
Senegal Semi-arid 0.20 0.87 (2) 5.70
California Central Valley Semi-arid 0.22 0.84 (2) 3.01
Great Artesian Arid 0.18 0.80 (2) 6.33
North China Plain Dry sub-humid 0.57 0.80 (2) 2.74
Umm Ruwaba Semi-arid 0.33 0.64 (2) 4.42
Congo Humid 1.22 0.62 (3) 2.12
Maranhão Humid 0.91 0.40 (2) 2.55
Indus River Arid 0.16 0.34 (3) 3.96
Amazon Humid 1.99 0.33 (2) 2.03
Guarani Humid 0.90 0.26 (3) 2.20
Ganges–Brahmaputra Humid 0.86 0.01 (2) 2.10
Canning Arid 0.13 –0.01 (3) 6.46

Table 5. Aquifer systems grouped by AI – dry (upper) and humid
(lower). Extreme recharge years identified from annual time series
by slope of 1GWS plotted line. SMD status inferred by prior neg-
ative

∫
PCPA and annual

∫
PCPA phase change also derived from

the same time series. ENSO state from NINO3.4 Index (B. Huang
et al., 2015).

Year of Negative
∫

PCPA ENSO
extreme

∫
PCPA phase state

recharge (likely change
SMD) (Y/N) (Y/N)

Aquifer systems grouped by AI: dry

Senegal 2010 Y Y La Niña
Umm Ruwaba 2014 Y Y Neutral
U. Kalahari 2008/2009 Y N La Niña
Karoo 2010/2011 N N La Niña
California CV 2015/2016 Y Y El Niño
Indus River 2003 Y Y El Niño
Indus River 2015 Y Y El Niño
Great Artesian 2010/2011 Y Y La Niña
Canning 2010/2011 Y Y La Niña
North China Plain 2003 Y Y El Niño

Aquifer systems grouped by AI: humid

Ganges 2003 N N El Niño
Ganges 2011 Y Y Neutral
Amazon 2008/2009 N N La Niña
Amazon 2011/2012 N N La Niña
Maranhão 2008/2009 N N La Niña
Guarani 2009/2010 Y N El Niño
Guarani 2015/2016 Y Y El Niño
Congo 2012/2013 Y N Neutral

1999). An extended dataset will improve the calibration
of HM as it relates to specific aquifer systems, providing a ro-
bust context for monitoring 1GWS, including groundwater
decline, in real time and protecting fundamentally important
groundwater resources.
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