
Earth Syst. Dynam., 11, 755–774, 2020
https://doi.org/10.5194/esd-11-755-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Groundwater storage dynamics in the world’s large
aquifer systems from GRACE: uncertainty

and role of extreme precipitation

Mohammad Shamsudduha1,2 and Richard G. Taylor1

1Department of Geography, University College London, London, UK
2Department of Geography, University of Sussex, Falmer, Brighton, UK

Correspondence: Mohammad Shamsudduha (m.shamsudduha@sussex.ac.uk)

Received: 24 July 2019 – Discussion started: 9 September 2019
Revised: 28 April 2020 – Accepted: 6 July 2020 – Published: 27 August 2020

Abstract. Under variable and changing climates groundwater storage sustains vital ecosystems and enables
freshwater withdrawals globally for agriculture, drinking water, and industry. Here, we assess recent changes in
groundwater storage (1GWS) from 2002 to 2016 in 37 of the world’s large aquifer systems using an ensemble of
datasets from the Gravity Recovery and Climate Experiment (GRACE) and land surface models (LSMs). Ensem-
ble GRACE-derived 1GWS is well reconciled to in situ observations (r = 0.62–0.86, p value <0.001) for two
tropical basins with regional piezometric networks and contrasting climate regimes. Trends in GRACE-derived
1GWS are overwhelmingly non-linear; indeed, linear declining trends adequately (R2>0.5, p value <0.001) ex-
plain variability in only two aquifer systems. Non-linearity in 1GWS derives, in part, from the episodic nature
of groundwater replenishment associated with extreme annual (>90th percentile, 1901–2016) precipitation and
is inconsistent with prevailing narratives of global-scale groundwater depletion at the scale of the GRACE foot-
print (∼ 200 000 km2). Substantial uncertainty remains in estimates of GRACE-derived 1GWS, evident from 20
realisations presented here, but these data provide a regional context to changes in groundwater storage observed
more locally through piezometry.

1 Introduction

Groundwater is estimated to account for between a quar-
ter and a third of the world’s annual freshwater withdrawals
to meet agricultural, industrial, and domestic demand (Döll
et al., 2012; Wada et al., 2014; Hanasaki et al., 2018). As
the world’s largest distributed store of fresh water, ground-
water plays a vital role in sustaining ecosystems and en-
abling adaptation to increased variability in rainfall and river
discharge brought about by climate change (Taylor et al.,
2013a). Sustained reductions in the volume of groundwa-
ter (i.e. groundwater depletion) resulting from human with-
drawals or changes in climate have historically been ob-
served as declining groundwater levels recorded in wells
(Scanlon et al., 2012a; Castellazzi et al., 2016; MacDonald et
al., 2016). The limited distribution and duration of piezomet-
ric records hinder, however, direct observation of changes in

groundwater storage globally including many of the world’s
large aquifer systems (WHYMAP and Margat, 2008).

Since 2002 the Gravity Recovery and Climate Experiment
(GRACE) has enabled large-scale (≥ 200000 km2) satel-
lite monitoring of changes in total terrestrial water storage
(1TWS) globally (Tapley et al., 2004). As the twin GRACE
satellites circle the globe ∼ 15 times a day they measure the
inter-satellite distance at a minute precision (within 1 µm)
and provide 1TWS for the entire earth approximately every
30 d. GRACE satellites sense the movement of total terres-
trial water mass derived from both natural (e.g. droughts) and
anthropogenic (e.g. irrigation) influences globally (Rodell et
al., 2018). Changes in groundwater storage (GRACE-derived
1GWS) are computed from 1TWS after deducting contri-
butions (Eq. 1) that arise from other terrestrial water stores
including soil moisture storage (1SMS), surface water stor-
age (1SWS), and snow water storage (1SNS) using data
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from land surface models (LSMs) either exclusively (Rodell
et al., 2009; Famiglietti et al., 2011; Scanlon et al., 2012a;
Famiglietti and Rodell, 2013; Richey et al., 2015; Thomas et
al., 2017) or in combination with in situ observations (Rodell
et al., 2007; Swenson et al., 2008; Shamsudduha et al., 2012).

1GWS=1TWS− (1SMS+1SWS+1SNS) (1)

Substantial uncertainty persists in the quantification of
changes in terrestrial water stores from GRACE measure-
ments that are limited in duration (2002 to 2016) and the ap-
plication of uncalibrated, global-scale LSMs (Shamsudduha
et al., 2012; Döll et al., 2014; Scanlon et al., 2018). Computa-
tion of 1GWS from GRACE 1TWS is argued, nevertheless,
to provide evaluations of large-scale changes in groundwa-
ter storage where regional-scale piezometric networks do not
currently exist (Famiglietti, 2014).

Previous assessments of changes in groundwater stor-
age using GRACE in the world’s 37 large aquifer systems
(Richey et al., 2015; Thomas et al., 2017) (Fig. 1, Table 1)
have raised concerns about the sustainability of human use
of groundwater resources. One analysis (Richey et al., 2015)
employed a single GRACE 1TWS product (CSR) in which
changes in subsurface storage (1SMS+1GWS) were at-
tributed to 1GWS. This study applied linear trends without
regard to their significance to compute values of GRACE-
derived 1GWS over 11 years from 2003 to 2013 and con-
cluded that the majority of the world’s aquifer systems (n=
21) are either “overstressed” or “variably stressed”. A subse-
quent analysis (Thomas et al., 2017) employed a different
GRACE 1TWS product (Mascons) and estimated 1SWS
from LSM data for both surface and subsurface runoff,
though the latter is normally considered to be groundwater
recharge (Rodell et al., 2004). Using performance metrics
normally applied to surface water systems including dams,
this latter analysis classified nearly a third (n= 11) of the
world’s aquifer systems as having their lowest sustainability
criterion.

Here, we update and extend the analysis of 1GWS in
the world’s 37 large aquifer systems using an ensemble
of three GRACE 1TWS products (CSR, Mascons, GRGS)
over a 14-year period from August 2002 to July 2016.
To isolate GRACE-derived 1GWS from GRACE 1TWS,
we employ estimates of 1SMS, 1SWS, and 1SNS from
five LSMs (CLM, Noah, VIC, Mosaic, Noah v.2.1) run by
NASA’s Global Land Data Assimilation System (GLDAS).
As such, we explicitly account for the contribution of 1SWS
to 1TWS, which has been commonly overlooked (Rodell et
al., 2009; Richey et al., 2015) despite evidence of its signifi-
cant contribution to 1TWS (Kim et al., 2009; Shamsudduha
et al., 2012; Getirana et al., 2017). Further, we characterise
trends in time series records of GRACE-derived 1GWS by
employing a non-parametric seasonal trend decomposition
procedure based on Loess (STL) (Cleveland et al., 1990)

that allows for the resolution of seasonal, trend, and irreg-
ular components of GRACE-derived 1GWS for each large
aquifer system. In contrast to linear or multiple linear regres-
sion techniques, STL does not assume that data are normally
distributed or that the underlying trend is linear (Shamsud-
duha et al., 2009; Humphrey et al., 2016; Sun et al., 2017).

2 Data and methods

2.1 Global large aquifer systems

We use the World-wide Hydrogeological Mapping and As-
sessment Programme (WHYMAP) Geographic Information
System (GIS) dataset for the delineation of world’s 37 large
aquifer systems (Fig. 1, Table 1) (WHYMAP and Margat,
2008). The WHYMAP network, led by the German Fed-
eral Institute for Geosciences and Natural Resources (BGR),
serves as a central repository and hub for global ground-
water data, information, and mapping with a goal of assist-
ing regional, national, and international efforts toward sus-
tainable groundwater management (Richts et al., 2011). The
largest aquifer system in this dataset (Table S1 in the Sup-
plement) is the East European Aquifer System (WHYMAP
no. 33; area: 2.9 million km2), and the smallest is the Cal-
ifornia Central Valley Aquifer System (WHYMAP no. 16;
area: 71 430 km2), which is smaller than the typical sens-
ing area of GRACE (∼ 200000 km2). However, Longuev-
ergne et al. (2013) argue that GRACE satellites are sensi-
tive to total mass changes at a basin scale, so 1TWS mea-
surements can be applied to smaller basins if the magnitude
of temporal mass changes is substantial due to mass water
withdrawals (e.g. intensive groundwater-fed irrigation). The
mean and median sizes of these large aquifers are ∼ 945000
and ∼ 600000 km2, respectively.

2.2 GRACE products

We use post-processed, gridded (1◦× 1◦) monthly GRACE
TWS data from CSR land (Landerer and Swenson, 2012) and
JPL Global Mascon (Watkins et al., 2015; Wiese et al., 2016)
solutions from NASA’s dissemination site (http://grace.jpl.
nasa.gov/data, last access: 5 August 2020), as well as a third
GRGS GRACE solution (CNES/GRGS release RL03-v1)
(Biancale et al., 2006) from the French space agency, Centre
National D’études Spatiales (CNES). To address the uncer-
tainty associated with different GRACE processing strategies
(CSR, JPL Mascons, GRGS), we apply an ensemble mean of
the three GRACE solutions (Bonsor et al., 2018).

The CSR land solution (version RL05.DSTvSCS1409)
is post-processed from spherical harmonics released by the
Centre for Space Research (CSR) at the University of Texas
at Austin. CSR gridded datasets are available at a monthly
time step and a spatial resolution of 1◦× 1◦ (∼ 111 km at
Equator), though the actual spatial resolution of the GRACE
footprint (Scanlon et al., 2012a) is 450 km×450 km or ∼

Earth Syst. Dynam., 11, 755–774, 2020 https://doi.org/10.5194/esd-11-755-2020

http://grace.jpl.nasa.gov/data
http://grace.jpl.nasa.gov/data


M. Shamsudduha and R. G. Taylor: Groundwater storage dynamics in the world’s large aquifer systems 757

Ta
bl

e
1.

Id
en

tifi
ca

tio
n

nu
m

be
r,

na
m

e,
an

d
ge

ne
ra

l
lo

ca
tio

n
of

th
e

w
or

ld
’s

37
la

rg
e

aq
ui

fe
r

sy
st

em
s

as
pr

ov
id

ed
in

th
e

W
H

Y
M

A
P

da
ta

ba
se

(h
ttp

s:
//w

w
w

.w
hy

m
ap

.o
rg

/,
la

st
ac

ce
ss

:
5

A
ug

us
t2

02
0)

.T
he

m
ea

n
cl

im
at

ic
co

nd
iti

on
of

ea
ch

of
th

e
37

aq
ui

fe
rs

ys
te

m
s

ba
se

d
on

th
e

ar
id

ity
in

de
x

is
ta

bu
la

te
d.

W
H

Y
M

A
P

W
H

Y
M

A
P

C
on

tin
en

t
C

lim
at

e
zo

ne
s

W
H

Y
M

A
P

W
H

Y
M

A
P

C
on

tin
en

t
C

lim
at

e
zo

ne
s

aq
ui

fe
r

aq
ui

fe
r

ba
se

d
on

aq
ui

fe
r

aq
ui

fe
r

ba
se

d
on

no
.

na
m

e
ar

id
ity

in
de

x
no

.
na

m
e

ar
id

ity
in

de
x

1
N

ub
ia

n
Sa

nd
st

on
e

A
qu

if
er

Sy
st

em
A

fr
ic

a
H

yp
er

-a
ri

d
20

M
ar

an
hã

o
B

as
in

So
ut

h
A

m
er

ic
a

H
um

id
2

N
or

th
w

es
te

rn
Sa

ha
ra

A
qu

if
er

Sy
st

em
A

fr
ic

a
A

ri
d

21
G

ua
ra

ni
A

qu
if

er
Sy

st
em

(P
ar

an
á

B
as

in
)

So
ut

h
A

m
er

ic
a

H
um

id
3

M
ur

zu
k–

D
ja

do
B

as
in

A
fr

ic
a

H
yp

er
-a

ri
d

22
A

ra
bi

an
A

qu
if

er
Sy

st
em

A
si

a
A

ri
d

4
Ta

ou
de

ni
–T

an
ez

ro
uf

tB
as

in
A

fr
ic

a
H

yp
er

-a
ri

d
23

In
du

s
R

iv
er

B
as

in
A

si
a

Se
m

i-
ar

id
5

Se
ne

ga
l–

M
au

ri
ta

ni
an

B
as

in
A

fr
ic

a
Se

m
i-

ar
id

24
G

an
ge

s–
B

ra
hm

ap
ut

ra
B

as
in

A
si

a
H

um
id

6
Iu

lle
m

m
ed

en
–I

rh
az

er
A

qu
if

er
Sy

st
em

A
fr

ic
a

A
ri

d
25

W
es

tS
ib

er
ia

n
A

rt
es

ia
n

B
as

in
A

si
a

H
um

id
7

L
ak

e
C

ha
d

B
as

in
A

fr
ic

a
A

ri
d

26
Tu

ng
us

s
B

as
in

A
si

a
H

um
id

8
U

m
m

R
uw

ab
a

A
qu

if
er

(S
ud

d
B

as
in

)
A

fr
ic

a
Se

m
i-

ar
id

27
A

ng
ar

a–
L

en
a

B
as

in
A

si
a

H
um

id
9

O
ga

de
n–

Ju
ba

B
as

in
A

fr
ic

a
A

ri
d

28
Y

ak
ut

B
as

in
A

si
a

H
um

id
10

C
on

go
B

as
in

A
fr

ic
a

H
um

id
29

N
or

th
C

hi
na

Pl
ai

ns
A

qu
if

er
Sy

st
em

A
si

a
H

um
id

11
U

pp
er

K
al

ah
ar

i–
C

uv
el

ai
–Z

am
be

zi
B

as
in

A
fr

ic
a

Se
m

i-
ar

id
30

So
ng

lia
o

Pl
ai

n
A

si
a

H
um

id
12

L
ow

er
K

al
ah

ar
i–

St
am

pr
ie

tB
as

in
A

fr
ic

a
A

ri
d

31
Ta

ri
m

B
as

in
A

si
a

A
ri

d
13

K
ar

oo
B

as
in

A
fr

ic
a

Se
m

i-
ar

id
32

Pa
ri

s
B

as
in

E
ur

op
e

H
um

id
14

N
or

th
er

n
G

re
at

Pl
ai

ns
A

qu
if

er
N

or
th

A
m

er
ic

a
Su

b-
hu

m
id

33
E

as
tE

ur
op

ea
n

A
qu

if
er

Sy
st

em
E

ur
op

e
H

um
id

15
C

am
br

o-
O

rd
ov

ic
ia

n
A

qu
if

er
Sy

st
em

N
or

th
A

m
er

ic
a

H
um

id
34

N
or

th
C

au
ca

su
s

B
as

in
E

ur
op

e
Se

m
i-

ar
id

16
C

al
if

or
ni

a
C

en
tr

al
V

al
le

y
A

qu
if

er
Sy

st
em

N
or

th
A

m
er

ic
a

Se
m

i-
ar

id
35

Pe
ch

or
a

B
as

in
E

ur
op

e
H

um
id

17
O

ga
lla

la
A

qu
if

er
(H

ig
h

Pl
ai

ns
)

N
or

th
A

m
er

ic
a

Se
m

i-
ar

id
36

G
re

at
A

rt
es

ia
n

B
as

in
A

us
tr

al
ia

Se
m

i-
ar

id
18

A
tla

nt
ic

an
d

G
ul

fC
oa

st
al

Pl
ai

ns
A

qu
if

er
N

or
th

A
m

er
ic

a
H

um
id

37
C

an
ni

ng
B

as
in

A
us

tr
al

ia
A

ri
d

19
A

m
az

on
B

as
in

So
ut

h
A

m
er

ic
a

H
um

id

https://doi.org/10.5194/esd-11-755-2020 Earth Syst. Dynam., 11, 755–774, 2020

https://www.whymap.org/


758 M. Shamsudduha and R. G. Taylor: Groundwater storage dynamics in the world’s large aquifer systems

Figure 1. Global map of 37 large aquifer systems from the GIS database of the World-wide Hydrogeological Mapping and Assessment
Programme (WHYMAP); the names of these aquifer systems are listed in Table 1 and correspond to the numbers shown on this map for
reference. Grey shading shows the aridity index based on CGIAR’s database of the Global Potential Evapotranspiration (Global-PET) and
Global Aridity Index (https://cgiarcsi.community/, last access: 5 August 2020); the proportion (as a percentage) of long-term trends in
GRACE-derived 1GWS of these large aquifer systems that is explained by linear trend fitting is shown in colour (i.e. linear trends toward
dark red and non-linear trends toward light brown–yellow).

200000 km2. To amplify TWS signals we apply the dimen-
sionless scaling factors provided as 1◦× 1◦ bins that are de-
rived from minimising differences between TWS estimated
from GRACE and the hydrological fields from the Commu-
nity Land Model (CLM4.0) (Landerer and Swenson, 2012).
JPL Mascons (version RL05M_1.MSCNv01) data process-
ing involves the same glacial isostatic adjustment correc-
tion but applies no spatial filtering as JPL RL05M directly
relates inter-satellite range-rate data to mass concentration
blocks (Mascons) to estimate monthly gravity fields in terms
of equal-area 3◦× 3◦ mass concentration functions in order
to minimise measurement errors. Gridded Mascon fields are
provided at a spatial sampling of 0.5◦ in both latitude and
longitude (∼ 56 km at the Equator). Similar to the CSR prod-
uct, dimensionless scaling factors are provided as 0.5◦×0.5◦

bins (Shamsudduha et al., 2017) to apply to the JPL Mascons
product that also derive from the Community Land Model
(CLM4.0) (Wiese et al., 2016). The scaling factors are mul-
tiplicative coefficients that minimise the difference between
the smoothed and unfiltered monthly 1TWS variations from
the CLM4.0 hydrology model (Wiese et al., 2016). Finally,
GRGS GRACE (version RL03-v1) monthly gridded solu-
tions with a spatial resolution of 1◦× 1◦ are extracted, and
aggregated time series data are generated for each aquifer
system. A description of the estimation method for 1GWS
from GRACE and in situ observations is provided below.

2.3 Estimation of ∆GWS from GRACE

We apply monthly measurements of terrestrial water storage
anomalies (1TWS) from Gravity Recovery and Climate Ex-
periment (GRACE) satellites and simulated records of soil
moisture storage (1SMS), surface runoff or surface water
storage (1SWS), and snow water equivalent (1SNS) from
NASA’s Global Land Data Assimilation System (GLDAS
version 1.0) at 1◦×1◦ grids for the period of August 2002 to
July 2016 to estimate (Eq. 1) groundwater storage changes
(1GWS) in the 37 WHYMAP large aquifer systems. This
approach is consistent with previous global (Thomas et al.,
2017) and basin-scale (Rodell et al., 2009; Asoka et al., 2017;
Feng et al., 2018) analyses of 1GWS from GRACE. We
apply three gridded GRACE products (CSR, JPL Mascons,
GRGS), an ensemble mean of 1TWS and individual stor-
age components of 1SMS and 1SWS from four land sur-
face models (LSMs: CLM, Noah, VIC, Mosaic), and a single
1SNS from Noah model (GLDAS version 2.1) to derive a to-
tal of 20 realisations of 1GWS (Table S5) for each of the 37
aquifer systems. We then averaged all the GRACE-derived
1GWS estimates to generate an ensemble mean 1GWS time
series record for each aquifer system. GRACE and GLDAS
LSM-derived datasets are processed and analysed in the R
programming language (R Core Team, 2017).

2.4 GLDAS land surface models

To estimate GRACE-derived 1GWS using Eq. (1), we use
simulated soil moisture storage (1SMS), surface runoff, as a
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https://cgiarcsi.community/


M. Shamsudduha and R. G. Taylor: Groundwater storage dynamics in the world’s large aquifer systems 759

proxy for surface water storage 1SWS (Bhanja et al., 2016,
Getirana et al., 2017; Thomas et al., 2017), and snow wa-
ter equivalent (1SNS) from NASA’s Global Land Data As-
similation System (GLDAS). The GLDAS system (https://
ldas.gsfc.nasa.gov/gldas/, last access: 5 August 2020) drives
multiple offline (not coupled to the atmosphere) land surface
models globally (Rodell et al., 2004) at variable grid reso-
lutions (from 2.5◦ to 1 km), enabled by the Land Informa-
tion System (LIS) (Kumar et al., 2006). Currently, GLDAS
(version 1) drives four land surface models (LSMs): Mosaic,
Noah, the Community Land Model (CLM), and the Variable
Infiltration Capacity (VIC) model. We apply monthly 1SMS
(sum of all soil profiles) and 1SWS data at a spatial res-
olution of 1◦× 1◦ from four GLDAS LSMs: the Commu-
nity Land Model (CLM, version 2.0) (Dai et al., 2003), Noah
(version 2.7.1) (Ek et al., 2003), the Variable Infiltration Ca-
pacity (VIC) model (version 1.0) (Liang et al., 2003), and
Mosaic (version 1.0) (Koster and Suarez, 1992). The respec-
tive total depths of modelled soil profiles are 3.4, 2.0, 1.9,
and 3.5 m in CLM (10 vertical layers), Noah (four vertical
layers), VIC (three vertical layers), and Mosaic (three verti-
cal layers) (Rodell et al., 2004). For snow water equivalent
(1SNS), we use simulated data from the Noah (v.2.1) model
(GLDAS version 2.1) forced by the global meteorological
dataset from Princeton University (Sheffield et al., 2006);
LSMs under GLDAS (version 1) are forced by the Climate
Prediction Center (CPC) Merged Analysis of Precipitation
(CMAP) data (Rodell et al., 2004).

2.5 Global precipitation datasets

To evaluate the relationships between precipitation and
GRACE-derived 1GWS, we use a high-resolution (0.5 ◦)
gridded, global precipitation dataset (version 4.01) (Har-
ris et al., 2014) available from the Climatic Research Unit
(CRU) at the University of East Anglia (https://crudata.uea.
ac.uk/cru/data/hrg/, last access: 5 August 2020). In light of
uncertainty in observed precipitation datasets globally, we
test the robustness of the relationship between precipitation
and groundwater storage using the GPCC (Global Precipita-
tion Climatology Centre) precipitation dataset (Schneider et
al., 2017) (https://www.esrl.noaa.gov/psd/data/gridded/data.
gpcc.html) from 1901 to 2016. Time series (January 1901 to
July 2016) of monthly precipitation from CRU and GPCC
datasets for the WHYMAP aquifer systems were analysed
and processed in the R programming language (R Core
Team, 2017).

2.6 Seasonal trend decomposition (STL) of GRACE
∆GWS

Monthly time series records (August 2002 to July 2016;
Figs. S1–S36) of the ensemble mean GRACE 1TWS and
GRACE-derived 1GWS were decomposed to seasonal,
trend, and remainder or residual components using a non-

parametric time series decomposition technique known as
the seasonal trend decomposition procedure based on a lo-
cally weighted regression method called Loess (STL) (Cleve-
land et al., 1990). Loess is a nonparametric method so that
the fitted curve is obtained empirically without assuming the
specific nature of any structure that may exist within the data
(Jacoby, 2000). A key advantage of the STL method is that it
reveals relatively complex structures in time series data that
could easily be overlooked using traditional statistical meth-
ods such as linear regression.

STL decomposition techniques have previously been used
to analyse GRACE 1TWS regionally (Hassan and Jin,
2014) and globally (Humphrey et al., 2016). GRACE-derived
1GWS time series records for each aquifer system were de-
composed using the STL method (see Eq. 2) in the R pro-
gramming language (R Core Team, 2017) as

Yt = Tt + St +Rt , (2)

where Yt is the monthly 1GWS at time t , Tt is the trend com-
ponent, St is the seasonal component, and Rt is a remainder
(residual or irregular) component.

The STL method consists of a series of smoothing opera-
tions with different moving window widths chosen to extract
different frequencies within a time series, and it can be re-
garded as an extension of classical methods for decompos-
ing a series into its individual components (Chatfield, 2003).
The nonparametric nature of the STL decomposition tech-
nique enables the detection of non-linear patterns in long-
term trends that cannot be assessed through linear trend anal-
yses (Shamsudduha et al., 2009). For STL decomposition,
it is necessary to choose values of smoothing parameters to
extract trend and seasonal components. The selection of pa-
rameters in STL decomposition is a subjective process. The
choice of the seasonal smoothing parameter determines the
extent to which the extracted seasonal component varies from
year to year: a large value will lead to similar components
in all years, whereas a small value will allow the extracted
component to track the observations more closely. Similar
comments apply to the choice of smoothing parameter for
the trend component. We experimented with several different
choices of smoothing parameters (see Fig. S37) and checked
the residuals (i.e. remainder component) for the overall per-
formance of the STL decomposition model. We conducted
the Shapiro–Wilk normality test on the residuals after fitting
the STL smooth line with a range of trend cycle (t.window)
and seasonal (s.window) windows and compared the p val-
ues. Visualisation of the results with several smoothing pa-
rameters (Fig. S37) and the corresponding smaller p values
(i.e. p value <0.01) of the normality test suggested that the
overall structure of time series at all sites could be captured
reasonably well using window widths of 13 for the seasonal
component and 37 for the trend. We apply the STL decompo-
sition with a robust fitting of the Loess smoother (Cleveland
et al., 1990) to ensure that the fitting of the curvilinear trend
does not have an adverse effect due to extreme outliers in the
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time series data (Jacoby, 2000). Finally, to make the inter-
pretation and comparison of non-linear trends across all 37
aquifer systems, smoothing parameters were then fixed for
all subsequent STL analyses.

3 Results

3.1 Variability in ∆TWS of the large aquifer systems

Ensemble mean time series of GRACE 1TWS for the
world’s 37 large aquifer systems are shown in Fig. 2 (High
Plains Aquifer System, no. 17) and Figs. S1–S36 (remain-
ing 36 aquifer systems). The STL decomposition of an en-
semble GRACE 1TWS in the High Plains Aquifer System
(no. 17) decomposes the time series into seasonal, trend, and
residual components (see Fig. S37). Variance (square of the
standard deviation) in monthly GRACE 1TWS (Figs. 3a and
4, Table S1) is highest (>100 cm2) primarily under mon-
soonal precipitation regimes within the Intertropical Con-
vergence Zone (e.g. Upper Kalahari–Cuvelai–Zambezi 11,
Amazon 19, Maranhão 20, Ganges–Brahmaputra 24). The
sum of individual components derived from the STL decom-
position (i.e. seasonal, trend, and irregular or residual) ap-
proximates the overall variance in time series data. The ma-
jority of the variance (>50 %) in 1TWS is explained by
seasonality (Fig. 3a); non-linear (curvilinear) trends repre-
sent <25 % of the variance in 1TWS with the exception of
the Upper Kalahari–Cuvelai–Zambezi no. 11 (42 %). In con-
trast, variance in GRACE 1TWS in most hyper-arid and arid
basins is low (Fig. 3a) at <10 cm2 (e.g. Nubian 1, NW Sa-
hara 2, Murzuk–Djado 3, Taoudeni–Tanezrouft 4, Ogaden–
Juba 9, Lower Kalahari–Stampriet 12, Karoo 13, Tarim 31)
and largely (>65 %) attributed to 1GWS (Table S2). Over-
all, changes in 1TWS (i.e. difference between two consec-
utive hydrological years) are correlated (Pearson correlation,
r>0.5, p value <0.01) with annual precipitation for 25 of
the 37 large aquifer systems (Table S1). GRACE 1TWS
in aquifer systems under monsoonal precipitation regimes
is strongly correlated with rainfall, with a lag of 2 months
(r>0.65, p value <0.01).

3.2 GRACE ∆GWS and evidence from in situ
piezometry

Evaluations of computed GRACE-derived 1GWS using in
situ observations are limited spatially and temporally by the
availability of piezometric records (Swenson et al., 2006;
Strassberg et al., 2009; Scanlon et al., 2012b; Shamsud-
duha et al., 2012; Panda and Wahr, 2015; Feng et al.,
2018). Consequently, comparisons of GRACE and in situ
1GWS remain opportunity-driven and, here, comprise the
Limpopo Basin in southern Africa and the Bengal Basin in
Bangladesh where we possess time series records of ade-
quate duration and density. The Bengal Basin is a part of
the Ganges–Brahmaputra aquifer system (aquifer no. 24),

whereas the Limpopo Basin is located between the Lower
Kalahari–Stampriet Basin (aquifer no. 12) and the Karoo
Basin (aquifer no. 13). The two basins feature contrasting
climates (i.e. tropical humid versus tropical semi-arid) and
geologies (i.e. unconsolidated sands versus weathered crys-
talline rock) that represent key controls on the magnitude and
variability expected in 1GWS. Both basins are in the trop-
ics and, as such, serve less well to test the computation of
GRACE-derived 1GWS at middle and high latitudes.

In the Bengal Basin, computed GRACE and in situ 1GWS
values demonstrate an exceptionally strong seasonal signal
associated with monsoonal recharge that is amplified by dry-
season abstraction (Shamsudduha et al., 2009, 2012) and
high storage of the regional unconsolidated sand aquifer, rep-
resented by a bulk specific yield (Sy) of 10 % (Fig. S38a).
Time series of GRACE and LSMs are shown in Fig. S39. The
ensemble mean time series of computed GRACE 1GWS
from three GRACE TWS solutions and five NASA GLDAS
LSMs is strongly correlated (r = 0.86, p value <0.001) with
in situ 1GWS derived from a network of 236 piezometers
(mean density of one piezometer per 610 km2) for the pe-
riod of 2003 to 2014. In the semi-arid Limpopo Basin where
mean annual rainfall (469 mm for the period of 2003 to 2015)
is one-fifth of that in the Bengal Basin (2276 mm), the sea-
sonal signal in 1GWS, primarily in weathered crystalline
rocks with a bulk Sy of 2.5 %, is smaller (Fig. S38b). Time
series of GRACE and LSMs are shown in Fig. S40. Com-
parison of in situ 1GWS, derived from a network of 40
piezometers (mean density of one piezometer per 1175 km2),
and computed GRACE-derived 1GWS shows broad cor-
respondence (r = 0.62, p value <0.001), though GRACE-
derived 1GWS is “noisier”; intra-annual variability may re-
sult from uncertainty in the representation of other terres-
trial stores using LSMs that are used to compute GRACE-
derived 1GWS from GRACE 1TWS. The magnitude of
uncertainty in monthly 1SWS, 1SMS, and 1SNS, which
are estimated by GLDAS LSMs to compute GRACE-derived
1GWS in each large-scale aquifer system, is depicted in
Figs. 2 and S1–S36. The favourable, statistically significant
correlations between the computed ensemble mean GRACE-
derived 1GWS and in situ 1GWS shown in these two con-
trasting basins indicate that, at large scales (∼ 200000 km2),
the methodology used to compute GRACE-derived 1GWS
has merit.

3.3 Trends in GRACE ∆GWS time series

Computation of GRACE-derived 1GWS for the 37 large-
scale aquifers globally is shown in Figs. 2 and 5. Figure 2
shows the ensemble GRACE 1TWS and GLDAS LSM
datasets used to compute GRACE-derived 1GWS for the
High Plains Aquifer System in the USA (aquifer no. 17 in
Fig. 1); datasets used for all other large-scale aquifer sys-
tems are given in the Supplement (Figs. S1–S36). In addi-
tion to the ensemble mean, we show uncertainty in GRACE-
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Figure 2. Time series data on terrestrial water storage anomaly (1TWS) from GRACE and individual water stores from GLDAS land surface
models (LSMs): (a) ensemble monthly GRACE 1TWS from three solutions (CSR, Mascons, GRGS), (b–c) ensemble monthly 1SMS and
1SWS+1SNS from four GLDAS LSMs (CLM, Noah, VIC, Mosaic), (d) computed monthly 1GWS and (e) monthly precipitation from
August 2002 to July 2016, (f) range of uncertainty in GRACE-derived GWS from 20 realisations, (g) ensemble TWS and annual precipitation,
and (h) ensemble GRACE-derived GWS and annual precipitation for the High Plains Aquifer System in the USA (WHYMAP aquifer no.
17). Values on the y axis in panels (a–e) show monthly water storage anomalies (cm), and panels (g, h) show monthly precipitation (cm).
Time series data for the 36 large aquifer systems can be found in Figs. S1–S36.
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derived 1GWS associated with 20 realisations from GRACE
products and LSMs. Monthly time series data on ensemble
GRACE-derived 1GWS for the other 36 large-scale aquifers
are plotted (absolute scale) in Fig. 5 (in black) and fitted with
a Loess-based trend (in blue). For all but five large aquifer
systems (e.g. Lake Chad Basin WHYMAP no. 7, Umm
Ruwaba 8, Amazon 19, West Siberian Basin 25, and East
European 33), the dominant time series component explain-
ing variance in GRACE-derived 1GWS is trend (Figs. 3b
and S41–S77). Trends in GRACE-derived 1GWS are, how-
ever, overwhelmingly non-linear (curvilinear); linear trends
adequately (R2>0.5, p value <0.05) explain variability in
GRACE-derived 1GWS in just 5 of 37 large-scale aquifer
systems, and of these, only two (Arabian 22, Canning 37) are
declining. GRACE-derived 1GWS values for three inten-
sively developed, large-scale aquifer systems (Table S1: Cal-
ifornia Central Valley 16, Ganges–Brahmaputra 24, North
China Plain 29) show episodic declines (Fig. 5), though in
each case their overall trend from 2002 to 2016 is declining
but non-linear (Fig. 1).

3.4 Computational uncertainty in GRACE ∆GWS

For several large aquifer systems primarily in arid and semi-
arid environments, we identify anomalously negative or pos-
itive estimates of GRACE-derived 1GWS that deviate sub-
stantially from underlying trends (Figs. 6 and S78). For
example, the semi-arid Upper Kalahari–Cuvelai–Zambezi
Basin (11) features an extreme negative anomaly in GRACE-
derived 1GWS (Fig. 6a) in 2007–2008 that is the conse-
quence of simulated values of terrestrial stores (1SWS+
1SMS) by GLDAS LSMs that exceed the ensemble GRACE
1TWS signal. Inspection of individual time series data for
this basin (Fig. S11) reveals greater consistency in the three
GRACE 1TWS time series data (variance of CSR: 111 cm2;
Mascons: 164 cm2; GRGS: 169 cm2) compared to simulated
1SMS among the four GLDAS LSMs (variance of CLM:
9 cm2; Mosaic: 90 cm2; Noah: 98 cm2; VIC is 110 cm2).
In the humid Congo Basin (10), positive 1TWS values in
2006–2007 but negative 1SMS values produce anomalously
high values of GRACE-derived 1GWS (Figs. 6b and S10).
In the snow-dominated, humid Angara–Lena Basin (27), a
strongly positive combined signal of 1SNS+1SWS exceed-
ing 1TWS leads to a very negative estimation of 1GWS
when groundwater is following a rising trend (Figs. 6c and
S26).

3.5 GRACE ∆GWS and extreme precipitation

Non-linear trends in GRACE-derived 1GWS (i.e. differ-
ence in STL trend component between two consecutive
years) demonstrate a significant association with precipita-
tion anomalies from the CRU dataset for each hydrologi-
cal year (i.e. percent deviations from mean annual precip-
itation between 2002 and 2016) in semi-arid environments

(Fig. 7; Pearson correlation, r = 0.62, p<0.001). These as-
sociations over extreme hydrological years are particularly
strong in a number of individual aquifer systems (Fig. 5;
Tables S3 and S4) including the Great Artesian Basin (36)
(r = 0.93), California Central Valley (16) (r = 0.88), North
Caucasus Basin (34) (r = 0.65), Umm Ruwaba Basin (8)
(r = 0.64), and Ogallala (High Plains) Aquifer (17) (r =
0.64). In arid aquifer systems, overall associations between
GRACE 1GWS and precipitation anomalies are statistically
significant but moderate (r = 0.36, p<0.001); a strong asso-
ciation is found only for the Canning Basin (37) (r = 0.52).
In humid (and sub-humid) aquifer systems, no overall sta-
tistically significant association is found, yet strong corre-
lations are noted for two temperate aquifer systems (North-
ern Great Plains Aquifer (14), r = 0.51; Angara–Lena Basin
(27), r = 0.54); weak correlations are observed in the humid
tropics for the Maranhão Basin (20, r = 0.24) and Ganges–
Brahmaputra Basin (24, r = 0.28).

Distinct rises observed in GRACE-derived 1GWS cor-
respond to extreme seasonal (annual) precipitation (Fig. 5;
Tables S3 and S4). In the semi-arid Great Artesian Basin
(aquifer no. 36) (Figs. 5 and S35), two consecutive years
(2009–2010 and 2010–2011) of statistically extreme (i.e.
>90th percentile, period: 1901 to 2016) monthly precipita-
tion interrupt a multi-annual (2002 to 2009) declining trend.
Pronounced rises in GRACE-derived 1GWS in response to
extreme annual rainfall are visible in other semi-arid, large
aquifer systems including the Umm Ruwaba Basin (8) in
2007, Lower Kalahari–Stampriet Basin (12) in 2011, Cali-
fornia Central Valley (16) in 2005, Ogalalla (High Plains)
Aquifer (17) in 2015, and Indus Basin (23) in 2010 and 2015
(Tables S3 and S4 and Figs. S2, S8, S12, S16, S22). Simi-
lar rises in GRACE-derived 1GWS in response to extreme
annual rainfall in arid basins include the Lake Chad Basin
(7) in 2012 and Ogaden–Juba Basin (9) in 2013 (Table S3
and Figs. S7, S9). In the Canning Basin, a substantial rise in
GRACE-derived 1GWS occurred in 2010–2011 (Tables S3
and S4 and Fig. S36) in response to extreme annual rainfall,
though the overall trend is declining.

Non-linear trends that feature substantial rises in GRACE-
derived 1GWS in response to extreme annual precipitation
under humid climates are observed in the Maranhão Basin
(20) in 2008–2009, Guarani Aquifer System (21) in 2015–
2016, and North China Plain (29) in 2003. Consecutive years
of extreme precipitation in 2012 and 2013 also generate a
distinct rise in GRACE-derived 1GWS in the Songliao Plain
(30) (Tables S3 and S4 and Fig. S29). In the heavily devel-
oped (Table S2) Ganges–Brahmaputra Basin (24), a multi-
annual (2002 to 2010) declining trend is halted by extreme
(i.e. highest over the GRACE period of 2002 to 2016 but
59th percentile over the period of 1901 to 2016 using the
CRU dataset) annual precipitation in 2011 (Tables S3 and
S4 and Fig. S23). Consecutive years from 2014 to 2015
of extreme annual precipitation increased GRACE-derived
1GWS and disrupted a multi-annual declining trend in the
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Figure 3. Seasonal trend decomposition of (a) GRACE 1TWS and (b) GRACE 1GWS time series data (2002 to 2016) for the world’s 37
large aquifer systems using the STL decomposition method; seasonal, trend, and remainder or irregular components of time series data are
decomposed and plotted as pie charts that are scaled by the variance of the time series in each aquifer system.

West Siberian Artesian Basin (25) (Tables S3 and S4 and
Fig. S24). In the sub-humid Northern Great Plains (14), dis-
tinct rises in GRACE-derived 1GWS occurred in 2010 (Ta-
bles S3 and S4 and Fig. S14) in response to extreme annual
precipitation, though the overall trend is linear and rising.
The overall agreement in mean annual precipitation between
the CRU and GPCC datasets for the period of 1901 to 2016 is
strong (median correlation coefficient in 37 aquifer systems;
r = 0.92).

4 Discussion

4.1 Uncertainty in GRACE-derived ∆GWS

We compute the range of uncertainty in GRACE-derived
1GWS associated with 20 potential realisations from ap-
plied GRACE (CSR, JPL Mascons, GRGS) products and

LSMs (CLM, Noah, VIC, Mosaic). Uncertainty is generally
higher for aquifer systems located in arid to hyper-arid envi-
ronments (Table 2, see Fig. S79). Computation of GRACE-
derived 1GWS relies upon uncalibrated simulations of indi-
vidual terrestrial water stores (i.e. 1SWS, 1SWS, 1SNS)
from LSMs to estimate 1GWS from GRACE 1TWS.
A recent global-scale comparison of 1TWS estimated by
GLDAS LSMs and GRACE (Scanlon et al., 2018) indi-
cates that LSMs systematically underestimate water storage
changes. Further, the absence of river routing and represen-
tation of lakes and reservoirs in the estimation of 1SWS by
LSMs constrains the computation of GRACE 1GWS as sim-
ilarly recognised by Scanlon et al. (2019). Finally, substan-
tial variability in 1SMS among GLDAS models and the lim-
ited depth (<3.5 m b.g.l.) to the deepest soil layer over which
these LSMs simulate 1SMS also hamper the estimation of
GRACE 1GWS, especially in drylands where the thickness

https://doi.org/10.5194/esd-11-755-2020 Earth Syst. Dynam., 11, 755–774, 2020
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Figure 4. Monthly time series data (black) on ensemble GRACE 1TWS for 36 large aquifer systems with a fitted non-linear trend line
(Loess smoothing line in thick blue) through the time series data; GRACE 1TWS for the remaining large aquifer system (High Plains
Aquifer System, WHYMAP aquifer no. 17) is given in Fig. 2. The shaded area in semi-transparent cyan shows the range of the 95 %
confidence interval of the fitted Loess-based non-linear trends; light grey bar diagrams behind the lines on each panel show the annual
precipitation anomaly (i.e. percentage deviation from the mean precipitation for the period of 1901 to 2016); banner colours indicate the
dominant climate of each aquifer based on the mean aridity index shown in the legend in Fig. 1.

of unsaturated zones may be an order of magnitude greater
(Scanlon et al., 2009).

We detect probable errors in GLDAS LSM data from
events that produce large deviations in GWS (Fig. 5). These
errors occur because GRACE-derived 1GWS is computed
as a residual (Eq. 1); overestimation (or underestimation) of
these combined stores produces negative (or positive) val-
ues of GRACE-derived 1GWS when the aggregated value of
other terrestrial water stores is strongly positive (or negative)

and no lag is assumed (Shamsudduha et al., 2017). Evidence
from the limited piezometric data presented here and else-
where (Panda and Wahr, 2015; Feng et al., 2018) suggests
that the dynamics in computed GRACE-derived 1GWS are
nonetheless reasonable, yet the amplitude of 1GWS from
piezometry is scalable due to uncertainty in the applied Sy
(Shamsudduha et al., 2012).

Assessments of 1GWS derived from GRACE are con-
strained by both their limited time span (2002–2016)

Earth Syst. Dynam., 11, 755–774, 2020 https://doi.org/10.5194/esd-11-755-2020
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Figure 5. Monthly time series data (black) on ensemble GRACE 1GWS for 36 large aquifer systems with a fitted non-linear trend line
(Loess smoothing line in thick blue) through the time series data; GRACE 1GWS for the remaining large aquifer system (High Plains
Aquifer System, WHYMAP aquifer no. 17) is given in Fig. 2. The shaded area in semi-transparent cyan shows the range of the 95 %
confidence interval of the fitted Loess-based non-linear trends; light grey bar diagrams behind the lines on each panel show the annual
precipitation anomaly (i.e. percentage deviation from the mean precipitation for the period of 1901 to 2016); banner colours indicate the
dominant climate of each aquifer based on the mean aridity index shown in the legend in Fig. 1.

and course spatial resolution (>200000 km2). For exam-
ple, centennial-scale piezometry in the Ganges–Brahmaputra
aquifer system (no. 24) reveals that recent groundwater de-
pletion (i.e. groundwater withdrawals that are unlikely to
be replenished within a century as per Bierkens and Wada,
2019) in NW India traced by GRACE (Figs. 5 and S23)
(Rodell et al., 2009; Chen et al., 2014) follows more than a
century of groundwater accumulation (see Fig. S80) through
the leakage of surface water via a canal network constructed

primarily during the 19th century (MacDonald et al., 2016).
Long-term piezometric records from central Tanzania and
the Limpopo Basin of southern Africa (Fig. S81) show dra-
matic increases in 1GWS associated with extreme seasonal
rainfall events that occurred prior to 2002 and thus provide a
vital context to the more recent period of 1GWS estimated
by GRACE. At regional scales, GRACE-derived 1GWS can
differ substantially from more localised, in situ observations
of 1GWS from piezometry. In the Karoo Basin (aquifer no.
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Figure 6. Time series of ensemble mean GRACE 1TWS (red), GLDAS 1SMS (green), 1SWS+1SNS (blue), and computed GRACE
1GWS (black) showing the calculation of anomalously negative or positive values of GRACE 1GWS that deviate substantially from
underlying trends. The three examples are (a) the Upper Kalahari–Cuvelai–Zambezi Basin (11) under a semi-arid climate, (b) the Congo
Basin (10) under a tropical humid climate, and (c) the Angara–Lena Basin (27) under a temperate humid climate. Examples from an additional
five aquifer systems under semi-arid and arid climates are given in the Supplement (Fig. S75).

13), GRACE-derived 1GWS is also rising (Figs. 5 and S13)
over periods during which groundwater depletion has been
reported in parts of the basin (Rosewarne et al., 2013). In
the Guarani Aquifer System (21), groundwater depletion is
reported for 2005 to 2009 in Ribeirão Preto near São Paulo
as a result of intensive groundwater withdrawals for urban
water supplies and the irrigation of sugarcane (Foster et al.,
2009), yet GRACE-derived 1GWS over this same period is
rising.

4.2 Variability in GRACE ∆GWS and role of extreme
precipitation

Non-linear trends in GRACE-derived 1GWS arise, in part,
from inter-annual variability in precipitation which has

similarly been observed in analyses of GRACE 1TWS
(Humphrey et al., 2016; Sun et al., 2017; Bonsor et al., 2018).
Annual precipitation in the Great Artesian Basin (aquifer no.
36) provides a dramatic example of how years (2009–2010
and 2010–2011 from both CRU and GPCC datasets) of ex-
treme precipitation can generate anomalously high ground-
water recharge that arrests a multi-annual declining trend
(Fig. 5), increasing variability in GRACE-derived 1GWS
over the relatively short period (15 years) of GRACE data.
The disproportionate contribution of episodic, extreme rain-
fall to groundwater recharge has previously been shown by
Taylor et al. (2013b) from long-term piezometry in semi-arid
central Tanzania where nearly 20 % of the recharge observed
over a 55-year period resulted from a single season of ex-
treme rainfall, associated with the strongest El Niño event
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Figure 7. Relationships between precipitation anomaly and annual changes in non-linear trends of GRACE 1GWS in the 37 large aquifer
systems grouped by aridity indices. Annual precipitation is calculated based on hydrological year (August to July) for 12 of these aquifer
systems and the other 25 following the calendar year (January to December); the highlighted (red) circles on the scatterplots are the years of
statistically extreme (> 90th percentile; period: 1901 to 2016) precipitation.

(1997–1998) of the last century (Fig. S81a). Further analysis
from multi-decadal piezometric records in drylands across
tropical Africa (Cuthbert et al., 2019) confirms this bias in
response to intensive precipitation.

The dependence of groundwater replenishment on extreme
annual precipitation indicated by GRACE-derived 1GWS
for many of the world’s large aquifer systems is consistent
with evidence from other sources. In a pan-tropical compar-
ison of stable-isotope ratios of oxygen (18O:16O) and hydro-
gen (2H:1H) in rainfall and groundwater, Jasechko and Tay-
lor (2015) show that recharge is biased to intensive monthly
rainfall, commonly exceeding the 70th percentile. In humid
Uganda, Owor et al. (2009) demonstrate that groundwater
recharge observed from piezometry is more strongly corre-
lated with daily rainfall exceeding a threshold (10 mm) than
all daily rainfall. Periodicity in groundwater storage indi-
cated by both GRACE and in situ data has been associated
with large-scale synoptic controls on precipitation (e.g. El
Niño–Southern Oscillation, Pacific Decadal Oscillation) in
southern Africa (Kolusu et al., 2019) and has been shown
to amplify recharge in major US aquifers (Kuss and Gur-
dak, 2014) and groundwater depletion in India (Mishra et al.,
2016).

In some large-scale aquifer systems, GRACE-derived
1GWS exhibits comparatively weak correlations with pre-
cipitation. In the semi-arid Iullemmeden–Irhazer Aquifer (6)
variance in rainfall over the period of GRACE observations
following the multi-decadal Sahelian drought is low (Ta-
ble S1), and the net rise in GRACE-derived 1GWS is as-
sociated with changes in the terrestrial water balance re-
sulting from land cover change (Ibrahim et al., 2014). In
the Amazon (16), rising trends in GRACE-derived 1GWS,
which are aligned with 1TWS reported previously by Scan-
lon et al. (2018) and Rodell et al. (2018), occur during a pe-
riod (2010–2016; see Table S18) that is the driest since the
1980s (Chaudhari et al., 2019); analyses over the longer term
(1980–2015) nevertheless point to an overall intensification
of the Amazonian hydrological cycle.

4.3 Trends in GRACE ∆GWS under global change

Our analysis identifies non-linear trends in GRACE-derived
1GWS for the vast majority (32 of 37) of the world’s large
aquifer systems (Figs. 1, 5, and 8). Non-linearity reflects, in
part, the variable nature of groundwater replenishment ob-
served at the scale of the GRACE footprint that is consistent
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Figure 8. Standardised monthly anomaly of non-linear trends of ensemble mean GRACE 1GWS for the 37 large aquifer systems from 2002
to 2016. Colours yellow to red indicate progressively declining short-term trends, whereas colours cyan to navy blue indicate rising trends.
Aquifers are arranged clockwise according to the mean aridity index starting from the hyper-arid climate on top of the circular diagram to
progressively humid. Legend colours indicate the climate of each aquifer based on the mean aridity index; time in years (2002 to 2016) is
shown from the centre of the circle outwards to the periphery.

with more localised emerging evidence from multi-decadal
piezometric records (Taylor et al., 2013b) (Fig. S81a). The
variable and often episodic nature of groundwater replen-
ishment complicates assessments of the sustainability of
groundwater withdrawals and highlights the importance of
long-term observations over decadal timescales in under-
taking such evaluations. Dramatic rises in freshwater with-
drawals, primarily associated with the expansion of irrigated
agriculture in semi-arid environments, have nevertheless led
to groundwater depletion, as computed globally from hy-
drological models (e.g. Wada et al., 2010; de Graaf et al.,
2017) and volumetric-based calculations (Konikow, 2011).
Further, groundwater depletion globally has been shown to
contribute to sea level rise (e.g. Wada et al., 2016). However,
as recognised in a comprehensive review by Bierkens and
Wada (2019), groundwater depletion is often localised, oc-
curring below the footprint (200 000 km2) of GRACE as has
been well demonstrated by detailed modelling studies in the
California Central Valley (Scanlon et al., 2012a) and North
China Plain (Cao et al., 2013).

Projections of the sustainability of groundwater with-
drawals under global change are complicated, in part, by
uncertainty in how radiative forcing will affect large-scale
regional controls on extreme annual precipitation like the
El Niño–Southern Oscillation (Latif and Keenlyside, 2009).
Globally, Reager et al. (2016) show a trend towards en-
hanced precipitation on land under climate change. Given
this trend and the observed intensification of precipitation on
land from global warming (Allan et al., 2010; Westra et al.,
2013; Zhang et al., 2013; Myhre et al., 2019), groundwater
recharge to many large-scale aquifer systems may increase
under climate change as revealed by the statistical relation-
ships found in this study between 1GWS and extreme an-
nual precipitation. The magnitude of this increase is, how-
ever, unlikely to offset the impact of human withdrawals
in areas of intensive abstraction for irrigated agriculture as
shown in NW India by Xie et al. (2020). The developed set
of GRACE-derived 1GWS time series data for the world’s
large aquifer systems provided here offers a consistent, addi-
tional benchmark alongside long-term piezometry to assess
not only large-scale climate controls on groundwater replen-
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ishment but also opportunities to enhance groundwater stor-
age through managed aquifer recharge.

5 Conclusions

Changes in groundwater storage (1GWS) computed from
GRACE satellite data continue to rely upon uncertain, un-
calibrated estimates of changes in other terrestrial stores of
water found in soil, surface water, and snow–ice from global-
scale models. The application here of ensemble mean val-
ues of three GRACE 1TWS processing strategies (CSR, JPL
Mascons, GRGS) and five land surface models (GLDAS 1:
CLM, Noah, VIC, Mosaic; GLDAS 2: Noah) is designed
to reduce the impact of uncertainty in an individual model
or GRACE product on the computation of GRACE-derived
1GWS. We nevertheless identify a few instances in which
erroneously high or low values of GRACE-derived 1GWS
are computed; these occur primarily in arid and semi-arid
environments where uncertainty in the simulation of terres-
trial water balances is greatest. Over the period of GRACE
observations (2002 to 2016), we show favourable compar-
isons between GRACE-derived 1GWS and piezometric ob-
servations (r = 0.62 to 0.86) in two contrasting basins (i.e.
semi-arid Limpopo Basin, tropical humid Bengal Basin) for
which in situ data are available. This study thus contributes
to a growing body of research and observations reconciling
computed GRACE-derived 1GWS and ground-based data.

GRACE-derived 1GWS from 2002 to 2016 for the
world’s 37 large-scale aquifer systems shows substantial
variability as explicitly revealed by 20 potential realisations
from GRACE products and LSMs computed here; trends
in ensemble mean GRACE-derived 1GWS are overwhelm-
ingly (87 %) non-linear. Linear trends adequately explain
variability in GRACE-derived 1GWS in just five aquifer sys-
tems for which linear declining trends, indicative of ground-
water depletion, are observed in two aquifer systems (Ara-
bian, Canning); overall trends for three intensively devel-
oped, large-scale aquifer systems (California Central Val-
ley, Ganges–Brahmaputra, North China Plain) are declin-
ing but non-linear. This non-linearity in GRACE-derived
1GWS for the vast majority of the world’s large aquifer
systems is inconsistent with previous analyses at the scale
of the GRACE footprint (∼ 200000 km2), asserting global-
scale groundwater depletion. Groundwater depletion, more
commonly observed by piezometry, is experienced at scales
well below the GRACE footprint and is likely to be more per-
vasive than suggested by the presented analysis of large-scale
aquifers. Non-linearity in GRACE-derived 1GWS arises, in
part, from episodic recharge associated with extreme (> 90th
percentile) annual precipitation. This episodic replenishment
of groundwater, combined with natural discharges that sus-
tain ecosystem functions and human withdrawals, produces
highly dynamic aquifer systems that complicate assessments
of the sustainability of groundwater withdrawals from large

aquifer systems. These findings highlight, however, poten-
tial opportunities for sustaining groundwater withdrawals
through induced recharge from extreme precipitation and
managed aquifer recharge.

Data availability. Time series data for a monthly anomaly (Au-
gust 2002 to July 2016) from an ensemble mean of three GRACE
products, GLDAS land surface models, and monthly precipitation
data from CRU for the 37 world’s large aquifer systems can be
accessed at the UK’s National Geoscience Data Centre (NGDC)
at https://doi.org/10.5285/0387fd53-9fed-468e-bda9-0bde8f5fda13
(Shamsudduha and Taylor, 2019).

Supplement. Supplementary information is available for this pa-
per as a single PDF file. The supplement related to this arti-
cle is available online at: https://doi.org/10.5194/esd-11-755-2020-
supplement.
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