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Abstract. Climate sensitivity to CO2 remains the key uncertainty in projections of future climate change. Tran-
sient climate response (TCR) is the metric of temperature sensitivity that is most relevant to warming in the next
few decades and contributes the biggest uncertainty to estimates of the carbon budgets consistent with the Paris
targets. Equilibrium climate sensitivity (ECS) is vital for understanding longer-term climate change and stabili-
sation targets. In the IPCC 5th Assessment Report (AR5), the stated “likely” ranges (16 %–84 % confidence) of
TCR (1.0–2.5 K) and ECS (1.5–4.5 K) were broadly consistent with the ensemble of CMIP5 Earth system mod-
els (ESMs) available at the time. However, many of the latest CMIP6 ESMs have larger climate sensitivities,
with 5 of 34 models having TCR values above 2.5 K and an ensemble mean TCR of 2.0± 0.4 K. Even starker,
12 of 34 models have an ECS value above 4.5 K. On the face of it, these latest ESM results suggest that the IPCC
likely ranges may need revising upwards, which would cast further doubt on the feasibility of the Paris targets.

Here we show that rather than increasing the uncertainty in climate sensitivity, the CMIP6 models help to
constrain the likely range of TCR to 1.3–2.1 K, with a central estimate of 1.68 K. We reach this conclusion
through an emergent constraint approach which relates the value of TCR linearly to the global warming from
1975 onwards. This is a period when the signal-to-noise ratio of the net radiative forcing increases strongly,
so that uncertainties in aerosol forcing become progressively less problematic. We find a consistent emergent
constraint on TCR when we apply the same method to CMIP5 models. Our constraints on TCR are in good
agreement with other recent studies which analysed CMIP ensembles. The relationship between ECS and the
post-1975 warming trend is less direct and also non-linear. However, we are able to derive a likely range of
ECS of 1.9–3.4 K from the CMIP6 models by assuming an underlying emergent relationship based on a two-box
energy balance model. Despite some methodological differences; this is consistent with a previously published
ECS constraint derived from warming trends in CMIP5 models to 2005. Our results seem to be part of a growing
consensus amongst studies that have applied the emergent constraint approach to different model ensembles and
to different aspects of the record of global warming.
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1 Introduction

The key uncertainty in projections of future climate change
continues to be the sensitivity of global mean temperature to
changes in the Earth’s energy budget, called “radiative forc-
ing”. This sensitivity is usually characterised in terms of the
global mean temperature that would occur if the atmospheric
carbon dioxide concentration was doubled, for which the ra-
diative forcing is reasonably well-known.

Two related quantities are used to characterise the climate
sensitivity of Earth system models (ESMs). Equilibrium cli-
mate sensitivity (ECS) is an estimate of the eventual steady-
state global warming at double CO2. Transient climate re-
sponse (TCR) is the mean global warming predicted to occur
around the time of doubling CO2 in ESM runs for which at-
mospheric CO2 concentration is prescribed to increase at 1 %
per year. Across an ensemble of ESMs, TCR values are less
than ECS values because of deep-ocean heat uptake, which
leads to a lag in the response of global temperature to the in-
creasing CO2 concentration (Hansen et al., 1985). The ratio
of TCR over ECS tends to decrease with increasing ECS and
depends on spatial pattern effects (Armour, 2017).

Despite decades of advances in climate science, the Earth’s
ECS and TCR remain uncertain. The “likely” range of ECS
(66 % confidence limit) has been quoted as 1.5 to 4.5 K in all
of the five Assessment Reports (ARs) of the Intergovernmen-
tal Panel on Climate Change (IPCC) starting in 1990, aside
from the fourth AR which moved the likely lower range tem-
porarily to 2 K. Similarly the likely range of TCR is given
as 1 to 2.5 K in the IPCC AR5, based on multiple lines of
evidence.

There have been numerous attempts to constrain ECS us-
ing the record of historical warming or palaeoclimate data
(Knutti et al., 2017) and more recently using emergent con-
straints which relate observed climate trends, variations or
other variables to ECS using an ensemble of models (Cald-
well et al., 2018; Cox et al., 2018a). However, debate still
rages about the likely range of ECS (Brown et al., 2018;
Bretherton and Caldwell, 2020; Cox et al., 2018b; Gregory
et al., 2019), in part because observed global warming is a
rather indirect measure of global warming at equilibrium.
On the other hand, TCR is more closely related to the rate
of warming and therefore ought to be more amenable to
constraint by the record of global warming (Bengtsson and
Schwartz, 2013; Gregory and Forster, 2008; Jiménez-de-la
Cuesta and Mauritsen, 2019; Tokarska et al., 2020). Never-
theless, the accepted likely range of TCR has also resisted
change (Knutti et al., 2017), for reasons we will discuss in
this paper. At the time of the AR5, the CMIP5 ESMs pro-
duced central estimates (mean±SD) of ECS (3.3± 0.7 K)
and TCR (1.8± 0.3 K) that were broadly consistent with
these IPCC likely ranges. However, there has been a gen-
eral drift upwards towards higher climate sensitivities in the
new CMIP6 ESMs, such that more than one-third of the new
CMIP6 models now have ECS values over 4.5 K (Forster

et al., 2020) and five have TCR values over 2.5 K (Table 1).
If the real climate system is similarly sensitive, the Paris cli-
mate targets will be much harder to achieve (Tanaka and
O’Neill, 2018).

Therefore some key science- and policy-relevant questions
arise:

a. Are such high climate sensitivities consistent with the
observational record?

b. If so, do the CMIP6 models demand an upward revision
to the IPCC likely ranges for climate sensitivity?

We address these questions in this paper by evaluating the
historical simulations of global warming from the CMIP6
models. In particular, we explore an emergent constraint on
TCR based on global warming from 1975 onwards (Jiménez-
de-la Cuesta and Mauritsen, 2019; Tokarska et al., 2020) but
using the CMIP6 models and observational data up to 2019.

Emergent constraints are increasingly used to assess future
change by exploiting statistical relationships in multimodel
ensembles between an observable and a variable describing
future climate (Cox et al., 2018a; Hall et al., 2019). In the
work presented here, we use the latest CMIP6 multimodel
ensemble to define an emergent relationship between his-
torical warming (expressed in terms of global mean surface
temperature, GMST, the observable) and TCR (the variable
related to future climate). In line with published recommen-
dations (Hall et al., 2019; Klein and Hall, 2015), we check
the robustness of the resulting emergent constraint against
the CMIP5 ensemble, using exactly the same methodology
as for CMIP6. We also follow the suggestion of Hall et al.
(2019) in striving to base the emergent constraint on sound
physical reasoning.

From physical principles, we expect values of TCR to be
very well-correlated with simulated global warming across a
model ensemble. By definition, TCR is a measure of warm-
ing from a simulation that is driven by an exponential 1.0 %
per year increase in CO2. Historical global warming has been
driven by a qualitative similar forcing, albeit somewhat less
rapid. In reality, the atmospheric CO2 concentration has in-
creased at about 0.5 % per year since 2000 (Dlugokenchy and
Tans, 2019), augmented by additional positive radiative forc-
ing from other well-mixed greenhouse gases and partially
offset by the cooling effects of anthropogenic aerosols.

The radiative effects of the rise in greenhouse gas concen-
trations are relatively well-known (Myhre et al., 2013) and
are broadly similar in different ESMs. By contrast, the ra-
diative forcing due to changes in anthropogenic aerosols, es-
pecially indirect effects via changes in cloud brightness and
lifetime, are poorly constrained (Myhre et al., 2013; Bellouin
et al., 2019).

These uncertainties in aerosol forcing have hindered at-
tempts to constrain TCR or ECS from the rate of warm-
ing, especially during the pre-1980 period when the burn-
ing of sulfurous coal led to increases in CO2 and increases
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Table 1. List of CMIP6 models used in this study and their effective radiative forcing at CO2 doubling F2×, the climate feedback parameter λ,
equilibrium climate sensitivity (ECS) and transient climate response (TCR). Mean values are reported for models with multiple realisations.
The values of F2×, ECS and λ are computed using the Gregory method (Gregory, 2004). Models above the horizontal line were used in
the extended simulations to 2019. Models below the line did not have SSP simulations available at the time of writing. Consistently derived
values for CMIP5 are displayed in Table S1 in the Supplement. The ensemble-mean values of TCR and ECS are shown in bold font as these
are most relevant to this study.

Centre Model F2× λ ECS TCR n 1T SD(1T )

BCC BCC-CSM2-MR 3.01 0.98 3.07 1.59 1 0.64
CAMS CAMS-CSM1-0 3.95 1.71 2.31 1.72 1 0.44
CAS FGOALS-f3-L 3.95 1.31 3.03 2.01 1 0.70
CCCma CanESM5 3.63 0.64 5.66 2.66 50 1.27 0.10
CNRM-CERFACS CNRM-CM6-1 3.54 0.72 4.94 2.08 10 0.73 0.11
CNRM-CERFACS CNRM-ESM2-1 3.09 0.66 4.66 1.92 5 0.65 0.15
CSIRO-ARCCSS ACCESS-CM2 3.21 0.67 4.81 2.00 1 0.77
CSIRO ACCESS-ESM1-5 2.71 0.68 3.97 1.91 3 0.84 0.10
EC-Earth-Consortium EC-Earth3-Veg 3.32 0.77 4.34 2.57 2 0.97 0.23
EC-Earth-Consortium EC-Earth3 3.30 0.78 4.22 2.38 10 0.72 0.16
INM INM-CM4-8 2.61 1.42 1.84 1.32 1 0.61
INM INM-CM5-0 2.88 1.49 1.93 1.40 1 0.55
IPSL IPSL-CM6A-LR 3.32 0.72 4.63 2.32 6 0.85 0.10
MIROC MIROC-ES2L 1.55 1 0.62
MIROC MIROC6 3.76 1.47 2.56 1.52 3 0.50 0.04
MOHC HadGEM3-GC31-LL 3.38 0.60 5.62 2.45 4 1.07 0.19
MOHC UKESM1-0-LL 3.56 0.66 5.41 2.72 5 1.13 0.13
MPI-M MPI-ESM1-2-HR 3.58 1.20 2.99 1.64 2 0.65 0.07
MRI MRI-ESM2-0 3.36 1.07 3.14 1.56 5 0.73 0.06
NCAR CESM2-WACCM 3.08 0.63 4.90 1.92 3 0.97 0.15
NCAR CESM2 3.13 0.59 5.30 2.04 3 0.82 0.01
NCC NorESM2-LM 3.06 1.13 2.69 1.46 3 0.63 0.18
NOAA-GFDL GFDL-CM4 2.91 0.71 4.09 1.97 1 0.86
NOAA-GFDL GFDL-ESM4 3.51 1.31 2.68 1.53 2 0.79 0.15
NUIST NESM3 3.73 0.78 4.76 2.73 2 0.93 0.17
UA MCM-UA-1-0 1.94 1 0.81

Mean 3.69 0.95 3.90 1.96 4.9 0.78 0.12
Standard deviation 0.40 0.34 1.18 0.42 9.4 0.19 0.06

AS-RCEC TaiESM1 2.34
BCC BCC-ESM1 3.03 0.89 3.39 1.74
E3SM-Project E3SM-1-0 3.23 0.60 5.38 2.99
NASA-GISS GISS-E2-1-G 3.89 1.43 2.71 1.68
NASA-GISS GISS-E2-1-H 3.55 1.14 3.12 1.89
MOHC HadGEM3-GC31-MM 3.36 0.61 5.52 2.37
MPI-M MPI-ESM1-2-HR 3.58 1.20 2.99 1.64
SNU SAM0-UNICON 3.83 1.02 3.76 2.25

Mean CMIP6 3.70 0.95 3.91 2.01
Standard deviation CMIP6 0.39 0.33 1.17 0.42
Mean CMIP5 3.58 1.06 3.31 1.79
Standard deviation CMIP5 0.22 0.29 0.76 0.34

in sulfate aerosols that went up almost together (Andreae
et al., 2005). As a result it has been difficult, based purely on
the observational record of global warming, to distinguish
between a model with high climate sensitivity and strong
aerosol cooling and a model with low climate sensitivity and
weak aerosol cooling (Kiehl, 2007).

In order to minimise the effects of uncertainties in aerosol
forcing, we need periods in which aerosol radiative forcing
changes relatively little compared to the change in radiative
forcing due to CO2 and other well-mixed greenhouse gases.
Fortunately, this applies to the decades after 1975 when total
aerosol load from global SO2 and NH3 emissions were sim-
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ilar to values over the last decade (Stevens et al., 2017). For
this reason, we focus on global warming since 1975. How-
ever, we also test the robustness of our conclusions to differ-
ent start dates (see Fig. 5c), including the start year of 1970
as used by Jiménez-de-la Cuesta and Mauritsen (2019) (here-
after JM19).

To establish an emergent constraint on ECS, we investigate
the appropriate functional form between observed warm-
ing and climate sensitivity. Due to the slow response of the
ocean, this is not expected to be linear, and using a set of
assumptions, JM19 proposed an analytical form based on
a two-layer box model. By computing the model parame-
ters directly per model, we investigate the appropriateness
of this analytical function and use it to derive an emergent
constraint.

The remainder of this paper is organised as follows: in
Sect. 2 we describe our methodological choices; Sect. 3 con-
tains the emergent constraints on TCR and ECS, and Sect. 4
contains the discussion and conclusions. More technical de-
tails concerning the regression methods are given in the Ap-
pendix.

2 Methodology

2.1 Choice of period over which to calculate warming
trends

To constrain climate sensitivity using observed warming, we
seek a period for which the forcing is relatively similar across
models. In order to identify such a period we compute the
effective radiative forcing F (ERF) for each model run using

F =1N + λ1T, (1)

following Forster et al. (2013). Here 1N is the difference in
net top-of-the-atmosphere radiative flux and 1T is the dif-
ference in near-surface temperature, both computed as global
annual mean anomalies relative to the initial state. We calcu-
late the signal-to-noise ratio of F at each time as the model
mean F divided by the standard deviation of F across the
model ensemble.

Figure 1 shows how the signal-to-noise ratio of the ERF
varies from 1880 to 2010. It is notable that the signal-to-noise
ratio increases rapidly from around 1975, as relatively well-
known greenhouse gas forcing continues to increase but the
uncertain aerosol forcing begins to saturate. We have there-
fore focused our analysis on the post-1975 warming, but we
also performed a sensitivity analysis by varying the start year
between 1960 and 2005.

2.2 Selection of CMIP6 model runs

We use all currently available CMIP6 models that have con-
trol (piControl), historical, a shared socioeconomic pathway
simulation (SSP1-2.6, SSP2-4.5, SSP3-7.0 or SSP5-8.5) and

Figure 1. Effective radiative forcing over the historical period, cal-
culated from 22 CMIP6 models as F =1N + λ1T : (a) ensemble
mean; (b) ensemble standard deviation; (c) signal-to-noise ratio.
Model means are calculated first, and then the ensemble mean is
calculated.

a 1 % CO2 increase per year (1pctCO2) experiment. We ex-
tend the historical simulations from 2014 to 2019 using the
shared socioeconomic pathways (SSPs) scenario runs. Ad-
ditional warming over this 5-year period varies very little
across the SSPs, so by default we use SSP2-4.5 as this has the
largest number of participating models at the time of writing.

2.3 Calculation of model sensitivity

From the 1pctCO2 experiment TCR is determined as the av-
erage temperature difference from the corresponding piCon-
trol run between 60 and 80 years after the start of the sim-
ulation (IPCC, 2013a). ECS is computed using the Gregory
method (Gregory, 2004) on the first 150 years of the abrupt-
4xCO2 simulations. The values of ECS and TCR that we de-
rived are given in Table 1.

2.4 Calculation of warming trend

Historical warming (our observable) is found from the his-
torical and SSP simulations using the global annual mean
surface air temperature (GMSAT) smoothed with an equally
weighted running mean. Some of these models have multiple
runs starting from different initial conditions, forcing time
series or parameter settings. We use all available runs.

We use smoothed GMSAT to calculate warming. This is
to limit the random effect of internal variability on the forced
change we wish to constrain. We choose a centred 11-year

Earth Syst. Dynam., 11, 737–750, 2020 https://doi.org/10.5194/esd-11-737-2020



F. J. M. M. Nijsse et al.: An emergent constraint on climate sensitivity from simulated historical warming 741

running mean to remove shorter interannual and mid-term
variability from sources such as the El Niño–Southern Os-
cillation (ENSO) and to reduce the effect of longer-period
modes of natural variability. We have tested the robustness
of the constraint on TCR to the length of the running mean.
It remains relatively invariant past a length of 8 years, sug-
gesting most of the internal variability in GMSAT resides in
shorter periods.

Warming 1T is calculated as the difference in GM-
SAT between two periods, typically the years 1975–1985
and 2009–2019 (or equivalently, the difference in smoothed
temperature between 2014 and 1980). We have chosen the
end year to be 2019 to maximise the chances of discrim-
ination between high- and low-sensitivity models. As the
forcing from CO2 increases with time, the warming in more
sensitive models is more likely to diverge from less sensi-
tive ones as we extend the period over which we calculate
the trend. Extending to 2019 also allows us to include the
most recent observational data and to eliminate possible ef-
fects from the warming slowdown between 2000 and 2012.
This slowdown has been attributed to a combination of inter-
nal variability and decreased forcing, amongst other things
(Medhaug et al., 2017). We assess the impact of the slow-
down by comparing emergent constraints derived from time
series truncated to have different end years.

2.5 Theoretical basis

2.5.1 Transient climate response

Once choices of the length of the running mean and start and
end years for the calculation of 1T are fixed (our observ-
able), we can fit an emergent relationship between the ob-
servable and our values of TCR via linear regression. Lin-
ear regression is performed using a hierarchical Bayesian
model which can take into account all the different sim-
ulations per model: models with more simulations have a
better-constrained post-1975 warming. This results in a set
of 127 simulations from 26 different models. The regression
method is further described in Appendix A. The choice of
linear regression is justified by considering a two-layer en-
ergy balance model (Winton et al., 2010; Geoffroy et al.,
2013a):

C
dT
dt
= F − λT − εγ (T − T0) ,

C0
dT0

dt
= γ (T − T0) . (2)

Here T is the top layer temperature anomaly, T0 the deep-
ocean temperature anomaly, λ is the climate feedback pa-
rameter, ε is the ocean heat uptake efficacy (reflecting a pat-
tern effect), and γ is the ocean heat uptake parameter (Win-
ton et al., 2010). The parameters C and C0 are the heat ca-
pacity of the upper ocean and deep ocean, respectively. We
will refer to this model as EBM-ε or EBM-1 if ε is set to 1.

We follow the approximations in Williamson et al. (2018)
and JM19 in assuming no change in deep-ocean tempera-
ture (T0 = 0) and assuming the upper ocean to be in equi-
librium (dT/dt = 0). These assumptions are reasonable for
timescales larger than a decade but smaller than a century
(see JM19) and lead to the following relationship:

TCR= s1T . (3)

Here s is a forcing parameter, defined as F2×/F , and
1T is the difference in temperature between two periods.
For fitting, we include an offset η, so that TCR= s1T + η,
allowing for a possible model mis-specification and regres-
sion dilution (Hahn, 1977). A hierarchical linear regression
was adopted which includes both uncertainty in1T and TCR
(see Appendix). The choice of 1975 for the starting period
minimises the uncertainty in our estimate of TCR. However,
uncertainty is relatively flat for starting periods between 1975
and 1990. We also investigated the sensitivity of our TCR
constraint to the final year, the length of the running mean,
the model selection and the method of regression (see Fig. 5).

2.5.2 Equilibrium climate sensitivity

Similarly to the constraint on TCR, we use the warming be-
tween 1975–1985 and 2009–2019 to find an emergent con-
straint on ECS. The relationship between climate sensitivity
and observed warming or TCR is not expected to be linear,
as a smaller fraction of equilibrium warming is typically re-
alised in models with high climate sensitivity within the first
decades of warming (Hansen et al., 1985; Rugenstein et al.,
2020). Using Eq. (2), ECS= F2×/λ, and again assuming the
upper ocean to be in equilibrium and the deep-ocean temper-
ature to not change, TCR and ECS are related via

ECS= TCR/(1− e′TCR). (4)

So the relationship between ECS and 1T ends up as

ECS=
1T

s′− e′1T
. (5)

The forcing parameter is denoted by s′, defined
as 1F/F2×, and e′ is the ocean heat uptake parameter, de-
fined as εγ /F2×. The function has an asymptote at s′−
e′1T = 0 and turns negative for larger 1T values. As neg-
ative ECS values are unphysical, we modify the equation by
keeping ECS at infinity for 1T > s′/e′. The appearance of
negative ECS for high 1T is an artefact of the “no deep-
ocean temperature rise” assumption: it corresponds to an
equilibrium between the heating effect of F−λ1T , balanced
by −εγ1T . In reality, this last term cancels out completely
with εγ1T0 at equilibrium. Fitting is done using orthogonal
distance regression.

To test the validity of these assumptions, we perform two
checks. Firstly, by explicitly simulating the two box model,
we investigate to what extent the analytical functional form
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Figure 2. Scatter plot of TCR values plotted against ECS values
for all CMIP6 models with both available at the time of submission.
Models from the same modelling group are plotted with the same
colour. Plot markers differentiate models from the same modelling
centre. Black line uses the average ocean heat uptake parameters as
fitted from the Geoffroy et al. (2013b) procedure, listed in Table S3,
and related ECS and TCR via ECS= TCR/(1− e′TCR), with e′ =
0.24, the model mean.

deviates from the true functional form. We are especially in-
terested in the upper region of this functional form, which,
if too steep, could lead to an upper estimate of ECS biased
high.

Secondly, we fit the ocean heat uptake and forcing param-
eters for all CMIP6 models, following the two algorithms
described in Geoffroy et al. (2013a, b), with slight modifica-
tions to ensure solutions exist for all models described in the
Supplement to this paper.

Using these fitting parameters, we investigate the physical
basis of Eq. (5) with the EBM-ε and EBM-1 models. If this
function derived from the two-box model is a faithful repre-
sentation, 1T/(s′− e′1T ) should be better related to ECS
with individual model parameters than with the bulk fitted
parameter. Figure 2 plots model TCR versus ECS, related
via Eq. (4), using the ensemble mean of the fitted ocean pa-
rameters.

3 Results

3.1 Transient climate response

Figure 3a shows the temperature anomaly over the pe-
riod 1880 to 2019 simulated by 26 different CMIP6 models
running a total of 127 simulations smoothed with an 11-year
running mean. The reference period in this case is 1880–
1910. Model runs have been colour-coded by their TCR
value, with darker red indicating models with higher TCR
and darker blue indicating lower TCR. Black lines are ob-
servational global warming datasets over the same period
(Morice et al., 2012; Rohde et al., 2013; Lenssen et al., 2019;
Zhang et al., 2020). Models with higher TCR either show
large warming at the end of the period, or portray a strong

aerosol cooling over the 20th century, particularly visible as
a dip around 1960–1970 (notably CNRM-ESM1, UKESM1-
0-LL and EC-Earth-Veg). Figure 3b shows the same infor-
mation for the end of the historical period although the ref-
erence period is now chosen to be 1975–1985, after the tem-
perature dip. The positive correlation intuitively expected be-
tween TCR and temperature increase1T is much clearer for
this time interval.

The 1T for each model simulation in Fig. 3b is used for
the emergent constraint on TCR in Fig. 4a. Observational
warming (black vertical dashed line) is the mean of Had-
CRUT4 (Morice et al., 2012), Berkeley Earth (Rohde et al.,
2013), GISSTEMP4 (Lenssen et al., 2019) and NOAA v5
(Zhang et al., 2020). The 90 % observational confidence in-
terval (grey shaded vertical area) is a combination of the ob-
servational uncertainty and the internal variability. To avoid
double-counting observational uncertainty, the 90 % regres-
sion confidence interval details the uncertainty of the best
estimate of 1T versus TCR (see Appendix for details).
The models from the previous CMIP5 generation gener-
ally fall within the prediction interval of the CMIP6 emer-
gent constraint: the emergent constraint is therefore robust
across generations (Klein and Hall, 2015). The best estimate
(1.68 K) from this emergent constraint is higher than the best
estimate using the larger set of models that have histori-
cal simulations up to 2014 but no future scenarios (median:
1.54 K; 5 %–95 % range: 0.76–2.30 K). This is primarily due
to the fact that 2004–2014 overlaps with the slowdown in
surface temperature increase over the 2000–2012 period, but
the wider range of models also impacts the regression.

Figure 4b shows the probability density functions (pdfs) of
TCR derived from the emergent constraint for both CMIP6
and the earlier CMIP5 model ensembles. For comparison, the
raw model range in each CMIP is plotted as a histogram,
as well as the reported IPCC AR5 likely range (assuming
a normal distribution). Both CMIP5 and CMIP6 pdfs are
very similar (central estimates differ by 0.1 K) even though
CMIP6 contains many more high-TCR models. As a con-
tinuation of the historical CMIP5 simulation, RCP8.5 is cho-
sen. The tighter constraint in CMIP5 is mostly a consequence
of differences in internal variability, which is 42 % larger in
CMIP6 than in CMIP5, in line with the findings of Parsons
et al. (2020).

3.1.1 Period selection

Estimates of TCR depend on the final year chosen for the
emergent constraint. Uncertainty in the estimate of TCR re-
duces as time increases and the central estimate converges as
shown in Fig. 5a. Later end years are favoured as the signal-
to-noise ratio of the net radiative forcing increases monoton-
ically after 1975 (see Fig. 1). In the 21st century, the climate
impact of volcanoes has been dominated by smaller erup-
tions (Stocker et al., 2019). The scenarioMIP simulations
used for 2015–2019 include a small background forcing from
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Figure 3. Global mean surface temperature of the 26 CMIP6 models named in Table 1. To avoid visual over-representation, a maximum of
10 realisations per model are plotted. An 11-year running mean was used. (a) Temperature anomaly 1T using 1880–1910 as a reference
period. (b) Temperature anomaly 1T relative to the 1975–1985 mean.

Figure 4. (a) Emergent constraint on TCR against historical warming 1T . 1T is calculated from the difference between 1975–1985
and 2009–2019 of a time series of GMSAT. Linear regression is performed with all CMIP5 and CMIP6 simulations. Shaded areas indicate a
90 % prediction interval (see Appendix A). The vertical dashed line is the mean value of the observations, and the y axis shows the probability
distribution of both generations of ensembles. (b) Comparison of probability distributions for the transient climate response using post-1975
warming using CMIP5 and CMIP6 simulations. The probability distribution in the fifth IPCC assessment is not fully specified, so the figure
shows a normal distribution with the same likely range as IPCC.

volcanoes (O’Neill et al., 2016). We estimate errors from a
potential mismatch between model and real forcing to be rel-
atively small.

To mitigate the effect of internal variability, we use a run-
ning mean of GMSAT. Figure 5b shows the likely range of
TCR as a function of the length of the running mean. Since
we use all available simulations including multiple realisa-
tions of the same model in the emergent constraint, the effect
of internal variability is already reduced and the length of the
running mean on the estimate of TCR is small – the central
estimate and the likely range remain relatively invariant past
a window length of 8 years.

Figure 5c shows the effect of the start year on the emer-
gent constraint. Uncertainty in the estimated value of TCR is
relatively flat between start years of 1975 and 1990. Uncer-
tainty for start years from 1990 onwards increases until the
estimate and the uncertainty revert towards the raw CMIP6
ensemble statistics (no predictive power) at later years.

3.1.2 Regression method

When only one realisation per model is used for ordinary
least square regression, regression dilution takes place in
which the slope is underestimated (Cox et al., 2018b). This
has the potential to lead to a slight overestimation of TCR
(Fig. 5d), as the observed warming is at the lower end of
the model range. JM19 used the average warming for mod-
els with multiple simulations. As not all models provide a
sufficient number of simulations, they state that this leads to
a minor inflation of the estimation of uncertainty. Although
we use a hierarchical Bayesian model as the default (de-
tails in Appendix A), we have investigated three other re-
gression methods used in the emergent constraint literature:
ordinary least squares (OLS) with only one realisation per
model, OLS on the mean warming per model and orthogo-
nal distance regression (Fig. 5d). While the first three give
very similar results, orthogonal distance regression gives a
somewhat lower estimate of TCR. Orthogonal distance re-
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Figure 5. Robustness of the result to various parameter choices and the choice of regression method. Unless stated differently, start year
is 1975, all years up to 2018 are used, and the length of the running mean is 11 years. For comparison, the 5 %–95 % model range and
IPCC range are shown, both assuming normal distributions. Panel (a): 5 %–95 % TCR range as a function of the final year (blue line central
estimate). Panel (b): 5 %–95 % TCR range as a function of the length of the running mean. Panel (c): 5 %–95 % TCR range as a function of
the start year. Panel (d): pdf of TCR from different regression methods. The hierarchical Bayesian model is compared to three other linear
regression methods used in the emergent constraint literature: ordinary least squares (OLS) with only one realisation per model and OLS
on the mean warming per model and orthogonal distance regression (ODR). (e) Resulting pdfs on TCR from stricter model selection (one
model per modelling centre) compared to regression using all models and the IPCC AR5 range.

gression assumes that there are both errors in the predictor
and in the predictand, which leads to a steeper slope. As our
observation lies under the average, a steeper slope results in
a smaller mean TCR value. Orthogonal distance regression
is known to sometimes overcompensate for errors in the in-
dependent variable, for instance in the case of the statistical
model not being perfectly known if the model deviates from
being a perfectly straight line (Carroll and Ruppert, 1996).

3.1.3 Model selection

Model selection can prevent double-counting of very similar
models (Sanderson et al., 2015; Cox et al., 2018a). As mod-
els from the same centre can have very dissimilar climate
sensitivities (Chen et al., 2014; Jiménez-de-la Cuesta and
Mauritsen, 2019) and sensitivity can change drastically with
only small adjustments to parameters (Zhao et al., 2016), we
initially use all available models in the CMIP5 and CMIP6
ensemble. Figure 5e shows that this choice does not signifi-
cantly change the best estimate of the transient response and
that using one model per modelling centre only very slightly
increases the variance, even as models from one modelling
centre are relative similar (Fig. 2).

3.2 Equilibrium climate sensitivity

Figure 6a shows the emergent constraint on ECS. For
CMIP5, the 5 %–95 % confidence interval lies between 0.96
and 4.09 K. The constraint is stronger for CMIP6, with the

Table 2. Emergent constraint on ECS depending on choice of en-
semble and period.

Ensemble Median 5 %–95 % range

CMIP5 1970–2005 2.3 K 0.7–8.4 K
CMIP5 hist+RCP85 2.2 K 1.0–4.1 K
CMIP6 1970–2005 2.5 K 1.0–8.6 K
CMIP6 historical 1.9 K 1.0–3.3 K
CMIP6 hist+SSP2-4.5 2.6 K 1.5–4.0 K

5 %–95 % confidence interval spanning 1.52–4.03 K. Further
results are shown in Table 2.

The results are highly dependent on the time interval cho-
sen. For shorter intervals, the theoretical functional form
shows an increased steepness for higher values of 1T , mak-
ing it more difficult to constrain. For instance, taking the time
period in line with JM19, i.e. 1970–1989 versus 1994–2005,
we obtain a 5 %–95 % interval of 0.70–8.41 K for CMIP5,
significantly wider than found in JM19, which reported a
5 %–95 % confidence interval of 1.72–4.12 K. The major dif-
ferences lie in the definition of the theoretical function, where
we have cut off the unphysical branch, and a correction of a
coding error in JM19.

In Fig. 6b the dark green dots represent expected ECS
from observed warming (using Eq. 5) and true ECS, using
the fitted parameters from Fig. 6a. The yellow and red crosses
denote the same, but now every model uses its own ocean
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Figure 6. (a) Emergent constraint for ECS, using the functional form of Eq. (5). The shaded area includes the 5 %–95 % confidence interval.
(b) Comparison of emergent constraint fitted parameters, using model values for s′ and e′. The coloured lines are OLS fits for the three cases,
and the black line indicates the 1 : 1 line. Three values for the EBM-ε model are not shown as their 1T/(s′− e′1T ) values are between
75 and 90 K.

parameters, F2× and model forcing computed using Eq. (1).
The yellow data shows the expected ECS computed from the
EBM-1 model. Full parameter fits for both models are found
in Tables S2 and S3.

The EBM-ε model performs poorly for large values of
the ocean heat uptake efficacy parameter ε. Models with
ε around 1.8 in particular show an expected ECS far above
a realistic range, with one expected ECS reaching a value of
89 K. Equation (5) is non-linear and small errors in parameter
estimation quickly lead to large errors in ECS. For the EBM-
ε model in particular, high internal variability may skew the
parameter estimate upwards.

The EBM-1 fit leads to an improved estimation of ECS
compared to the Eq. (5) fit in 53 % of the cases, whereas
the EBM-ε model leads to an improvement in 34 % of cases.
This pattern in similar in the case of only historical models
being used, with 66 % and 42 % improved respectively.

3.2.1 Functional form

Explicitly simulating the two-layer model shows that the
steepness of the graph is overestimated: assuming no deep-
ocean temperature rise (T0 = 0) dampens the temperature re-
sponse of the upper ocean. Geoffroy et al. (2013a) derived an
analytical solution to the two-box model of Eq. (2) under the
weaker assumption of a linearly increasing forcing, which
also showed a less steep increase in ECS with 1T for high
values of 1T . This leads to the question whether the upper
range of ECS is overestimated. In Fig. S1 in the Supplement,
we show this is not the case: by using a decreased ocean heat
uptake parameter e′ and forcing, the two analytical solutions
do overlap, which demonstrates that using the approximated
Eq. (5) in the regression should not lead to biased results in
the emergent constraint but simply that the fitted parameters
will be slightly different from the model parameters. This
also explains why the regression using model parameters in

Fig. 6b is not significantly better than using the overall fitted
parameters of Fig. 6a.

4 Discussion and conclusion

The emergent constraint found on TCR in this paper is very
similar to the ones found in JM19 and Tokarska et al. (2020)
(see Table 3). The most important determinant of the con-
straint is the periods taken. We have slightly expanded on the
number of models compared to Tokarska et al. (2020), taking
a different period, and we have compared further regression
choices.

Our best estimate for TCR from the CMIP6 models is
1.68 K, which remains close to the centre of the likely range
(1–2.5 K) given in the IPCC AR5 (IPCC, 2013b). The emer-
gent constraint on TCR from the CMIP6 models is, however,
strong enough to indicate a much tighter likely range of TCR
(16 %–84 %, 1.29–2.05 K).

We find a consistent emergent constraint from the CMIP5
models against observed global warming from 1975 to 2019
(16 %–84 %, 1.27–1.88 K). Furthermore, both of these likely
ranges overlap strongly with the emergent constraint on TCR
derived by Jiménez-de-la Cuesta and Mauritsen (2019) us-
ing a similar method but only considering global warming
from 1970 to 2005 (5 %–95 %, 1.17–2.16 K). In terms of the
classification proposed by Hall et al. (2019), we therefore
now have a confirmed emergent constraint on TCR, with con-
sistency across generations and a sound theoretical frame-
work.

Equilibrium climate sensitivity is likely between 1.9 and
3.4 K (16 %–84 % range). This finding strengthens previous
evidence that ECS is very unlikely to be above 4.5 K (Cox
et al., 2018a; Jiménez-de-la Cuesta and Mauritsen, 2019;
Goodwin et al., 2018). For instance, Goodwin et al. (2018)
used history matching, a simple emulator, and observations
of surface temperature, ocean heat uptake and carbon fluxes
to estimate climate sensitivity and concluded that there is a
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Table 3. Emergent constraint on TCR depending on choices of ensemble and period. Results from JM19 and Tokarska et al. (2020) are also
shown for comparison.

Study Ensemble Period Median 5 %–95 % range 16 %–84 % range

Jiménez-de-la Cuesta and Mauritsen (2019) CMIP5 1970–2005 1.7 K 1.2–2.2 K
This study CMIP5 1970–2005 1.7 K 1.1–2.3 K 1.4–2.1 K
Tokarska et al. (2020) CMIP6 1981–2017 1.6 K 1.2–2.0 K
This study CMIP6 1975–2019 1.7 K 1.0–2.3 K 1.3–2.1 K

5 %–95 % range of 2.0 to 4.3 K. Renoult et al. (2020) used
a combined emergent constraint of the Last Glacial Max-
imum and mid-Pliocene Warm Period to constrain ECS to
1.1–3.9 K, with the same best estimate of 2.6 K.

Does the presence of many models with ECS over 4.5 K
mean that the CMIP5 generation was better or more useful
for understanding climate sensitivity than CMIP6? From the
point of view of emergent constraints the answer is clearly
no, as model spread helps capture the shape of the emergent
relationship.

In the future, we hope that this TCR constraint will be-
come the basis for constraints also on TCRE (transient cli-
mate response to emissions), but this will require the inclu-
sion of additional constraints on land and ocean carbon up-
take.

However, we are now in a position to answer the questions
that we posed in Sect. 1:

a. Are such high climate sensitivities consistent with the
observational record? No; models with high ECS (>
4.5 K) and high TCR (> 2.5 K) do not appear to be
consistent with observed global warming since 1975
(Fig. 3b).

b. If so, do the CMIP6 models demand an upward revision
to the IPCC likely ranges for climate sensitivity? No;
instead, emergent constraints on TCR (Fig. 4) and ECS
(Fig. 6) suggest narrower likely ranges for TCR (1.3–
2.1 K) and ECS (1.9–3.4 K).
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Figure A1. Schematic of the hierarchical Bayesian model em-
ployed. The data layer models a best estimate of historical warm-
ing for each model. With this estimate, a regression is performed
between historical warming and TCR in the process layer. Using
information from both layers and observed warming, a probability
density function is estimated for TCR as the final step.

Appendix A: Hierarchical linear regression

To systematically include the information from all model re-
alisations, we use a hierarchical Bayesian model (Sansom,
2014). This model includes two layers: the normal linear re-
gression (process layer) and a layer that computes the ex-
pected warming per model from all its initial value reali-
sations (data layer). To include the initial value ensemble,
we assume that each model m has a “true” or “best” value
for warming over the last decades denoted by 1TT . We
further assume that every realisation j of a model gives a
value of 1T that is drawn from a normal distribution with
mean1TT and a standard deviation σx that is the same across
all models. Our hierarchical model consists of two steps – for
each model the best estimate of historical warming is com-
puted and with this value a simple linear regression is per-
formed:

1Tm,j |1Tm,σx ∼ normal (1Tm,σx) , (A1)
TCRm|α,β,σy ∼ normal

(
α+β1Tm,σy

)
. (A2)

The probability density function for TCR is then sampled
from the observed warming between 1975–1985 and 2009–
20191Tobs using the emergent constraint. The observational
uncertainty σobs is taken as the sample standard deviation of
the four observational datasets.

TCRpred = normal
(
α+βnormal

(
1Tobs,

√
σ 2
x + σ

2
obs

)
,σy

)
(A3)

The second layer corresponds to normal linear regression,
while the first layer makes an estimate of the true1Tm. Note
that especially for models with only few initial value mem-
bers, the best 1Tm does not necessarily correspond to the
mean value of these ensemble members but will instead lie
closer to the regression line.

As no warming would be expected if climate sensitivity
were zero, we expect the regression to pass through the in-
tercept and chose a prior for the intercept α of Normal(0, 1).
Weakly informative priors are chosen for the slope β, the un-
certainty of the regression σy and the internal variability σx :

α ∼ normal(0,1); (A4)
β ∼ normal(2,10); (A5)
σy ∼ half-normal(0.5,10); (A6)
σx ∼ half-normal(0.2,0.5). (A7)
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