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Abstract. We examine what can be learnt about climate sensitivity from variability in the surface air temper-
ature record over the instrumental period, from around 1880 to the present. While many previous studies have
used trends in observational time series to constrain equilibrium climate sensitivity, it has also been argued that
temporal variability may also be a powerful constraint. We explore this question in the context of a simple
widely used energy balance model of the climate system. We consider two recently proposed summary measures
of variability and also show how the full information content can be optimally used in this idealised scenario.
We find that the constraint provided by variability is inherently skewed, and its power is inversely related to the
sensitivity itself, discriminating most strongly between low sensitivity values and weakening substantially for
higher values. It is only when the sensitivity is very low that the variability can provide a tight constraint. Our
investigations take the form of “perfect model” experiments, in which we make the optimistic assumption that
the model is structurally perfect and all uncertainties (including the true parameter values and nature of internal
variability noise) are correctly characterised. Therefore the results might be interpreted as a best-case scenario
for what we can learn from variability, rather than a realistic estimate of this. In these experiments, we find
that for a moderate sensitivity of 2.5 ◦C, a 150-year time series of pure internal variability will typically support
an estimate with a 5 %–95% range of around 5 ◦C (e.g. 1.9–6.8 ◦C). Total variability including that due to the
forced response, as inferred from the detrended observational record, can provide a stronger constraint with an
equivalent 5 %–95 % posterior range of around 4 ◦C (e.g. 1.8–6.0 ◦C) even when uncertainty in aerosol forcing
is considered. Using a statistical summary of variability based on autocorrelation and the magnitude of residuals
after detrending proves somewhat less powerful as a constraint than the full time series in both situations. Our
results support the analysis of variability as a potentially useful tool in helping to constrain equilibrium climate
sensitivity but suggest caution in the interpretation of precise results.

1 Introduction

For many years, researchers have analysed the warming of
the climate system as observed in the modern instrumental
temperature record (spanning the mid-19th to early-21st cen-
tury), in order to understand the response of the climate sys-
tem to external forcing. For the most part, the focus has been
on the long-term energy balance as constrained by the warm-
ing trend in atmospheric and oceanic temperatures (e.g. Gre-
gory et al., 2002; Otto et al., 2013; Lewis and Curry, 2015).

However, some research has focused more specifically on the
temporal variability exhibited in the surface air temperature
record (Schwartz, 2007; Cox et al., 2018a), which is the fo-
cus of this paper.

Schwartz (2007) argued on the basis of a simple zero-
dimensional energy balance model that an analysis based on
the fluctuation–dissipation theorem (Einstein, 1905) could be
used to directly diagnose the sensitivity of the Earth’s climate
system S – here conventionally defined as the equilibrium
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surface air temperature response to a doubling of the atmo-
spheric CO2 concentration – from variability in the observed
record of annually and globally averaged surface air temper-
ature observations over the observational record. While we
do not wish to repeat the arguments here, we will note that
several researchers disputed this analysis, demonstrating in-
ter alia that this method did not reliably diagnose the sensi-
tivity of climate models and also arguing why it could not
be expected to do so, given their complexity (Foster et al.,
2008; Knutti et al., 2008; Kirk-Davidoff, 2009). Perhaps as
a consequence of these arguments, this line of research was
largely ignored for the subsequent decade.

More recently however, Cox et al. (2018a) reopened this
question with an analysis based on an emergent constraint
approach. That is, rather than following the directly diag-
nostic approach of Schwartz (2007), they instead observed
that a quasi-linear relationship existed across an ensemble
of CMIP5 models (Taylor et al., 2012), between the sen-
sitivities of these models and their interannual temperature
variabilities as summarised in a statistic which they denoted
9. It has been cogently argued that an emergent constraint
should only be taken seriously if supported by some theo-
retical basis (Caldwell et al., 2014), and Cox et al. (2018a)
did indeed present an analysis – again based on simple zero-
dimensional energy balance modelling – which qualitatively
underpinned this linear relationship. Using the value of9 ob-
tained from observations of surface air temperature, together
with the empirical relationship between9 and S they had de-
rived from the climate models, they produced a best estimate
of the equilibrium climate sensitivity of 2.8 ◦C with a likely
(66 % probability) range of 2.2–3.4 ◦C, a substantially tighter
range than most previous research. However, questions have
also been raised about this result (Brown et al., 2018; Rypdal
et al., 2018; Po-Chedley et al., 2018; Cox et al., 2018b).

In this paper, we explore the question of to what extent
temporal variability in the globally and annually averaged
temperature record can be used to constrain equilibrium cli-
mate sensitivity. We consider both the internal variability in
the climate system itself and also the total variability includ-
ing deviation from a linear trend due to the forced response.
Our investigations are performed in the paradigm of a sim-
ple idealised modelling framework, using a two-layer energy
balance model which has been widely used to simulate the
climate system and which generalises and improves on the
performance of the zero-dimensional model. As part of our
investigations, we examine the relationship between the 9
statistic and the equilibrium sensitivity in the model. We also
show how the full time series of variability can be used to
constrain climate sensitivity, under a variety of idealised sce-
narios. Our results are based on “perfect model” experiments
and therefore may be more readily interpreted as a best-case
scenario for what we can learn from variability, rather than a
realistic estimate of this.

In the next section, we present the two-layer energy bal-
ance model and briefly outline the experimental methods

used in this paper. We first focus on internal variability, that
is to say, the temporal variability arising entirely from inter-
nal dynamics of the climate system in the absence of forc-
ing. We evaluate the power of the 9 statistic in constraining
equilibrium sensitivity and also consider the more general
question of what could in principle be learnt from the full
time series. We then consider variability over the period of
the observational record (primarily the 20th century but with
some extension into the 19th and 21st centuries). This in-
cludes forced variability due to temporal changes in both nat-
ural and anthropogenic forcings as well as the internal vari-
ability in the climate system. Throughout the paper, the term
variability refers simply to all temporal variation in the annu-
ally averaged temperature time series after any linear trend is
removed.

2 Methods

2.1 Model

The basic underpinning of previous work is energy balance
modelling of the climate system, from which it is anticipated
that interannual variability may be informative regarding the
equilibrium sensitivity. While previous research was based
on analysis of the simplest possible zero-dimensional single-
layer planetary energy balance, there is evidence that the be-
haviour of the climate system over the historical period is
poorly modelled by such a system (e.g. Rypdal and Rypdal,
2014). Therefore, we use here a slightly more complex two-
layer model based on Winton et al. (2010) and Held et al.
(2010). This model has been shown to reasonably replicate
the transient behaviour of the CMIP5 ensemble of complex
climate models (Geoffroy et al., 2013a, b). The model is de-
fined by the two equations:

Cm
dTm

dt
= F t

+ λTm− εγ (Tm− Td)+Cmδ
t (1)

Cd
dTd

dt
= γ (Tm− Td). (2)

This is a two-layer globally averaged energy balance
model which simulates the mixed (Tm) and deep (Td) ocean
temperature anomalies in the presence of time-varying forc-
ing F t. λ=−F2×/S is the radiative feedback parameter; S
is the equilibrium sensitivity, and F2× is the forcing due to
a doubling of the atmospheric CO2 concentration. Cm and
Cd are the heat capacities of the mixed-layer and deep ocean
respectively, and γ represents the ocean heat transfer param-
eter. The parameter ε was introduced by Winton et al. (2010)
to represent the deep-ocean heat uptake efficacy, and while
it is not important for our analysis, we include it for con-
sistency with the broader literature. In a slight modification
to Winton et al. (2010), we add a noise term δt to the first
equation to represent the internal variability in the system as
was originally introduced in a single-layer energy balance
climate model by Hasselmann (1976). Here δt is sampled
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on an annual (i.e. time step) basis from a Gaussian N (0,σ )
where we generally use the value σ = 0.05, which generates
deviations of order 0.05 ◦C on an annual basis, reasonably
compatible with both general circulation model (GCM) re-
sults and observations of the climate system. Our conclusions
are not sensitive to this choice. The mixed-layer temperature
Tm is considered synonymous with the globally averaged sur-
face temperature. The equations are solved via the simple
Euler method with a 1-year time step.

The values of the various adjustable parameters are listed
in Table 1. We assume depths of 75 and 1000 m for the mixed
and deep ocean layers respectively, which are used to cal-
culate the heat capacities Cm and Cd respectively based on
ocean coverage of 70 % of the planetary surface area. The
default values for adjustable parameters are given in Table 1,
and the values used here lie close to the mean of those ob-
tained by fitting the model to CMIP5 simulations by Geof-
froy et al. (2013a). Our aim here is not specifically to repli-
cate or mimic this ensemble but to allow for a reasonable
range of parameter values. If we set γ = 0 and ignore the
deep ocean, then we recover the single-layer model of Has-
selmann (1976) which was used by both Schwartz (2007)
and Cox et al. (2018a) in their theoretical analyses.

2.2 Bayesian estimation

Our investigations are performed within the paradigm of
Bayesian estimation. In general, the Bayesian approach pro-
vides us with a way to estimate a set of unknown parameters
2 from a set of observations O via Bayes’ theorem,

P (2|O)= P (O|2)P (2)/P (O). (3)

Here P (2|O) is the posterior probability distribution of
2 conditioned on a set of observations O; P (O|2) is the
likelihood function that indicates the probability of obtaining
observationsO for any particular set of parameters2, which
in this paper will always contain S and may include other
parameters. P (2) is a prior distribution for the parameters
2, and P (O) is the probability of the observations, which is
required as a normalising constant in the calculation of the
posterior probability distribution.

Formally, the value of the observations is fully sum-
marised by the likelihood function P (O|2), but we primar-
ily present our results as posterior probability density func-
tions (pdf’s) in order to provide an easily interpreted output
which can be directly compared to previously published re-
sults. We therefore use a uniform prior in S as this is typi-
cally the implicit assumption in emergent constraint analy-
ses (Williamson et al., 2019). This choice results in the pos-
terior being visually equivalent to the likelihood even though
their interpretation is somewhat different. In some experi-
ments, we will consider that only the sensitivity is unknown,
but in others we will consider a wider range of parametric
uncertainties. The priors that we use for all uncertain param-
eters are shown in Table 1.

2.3 Additional data

While this study primarily focusses on the behaviour of the
simple energy balance model, we also use and present some
data from external sources. In order to perform simulations
of the historical period, we force our climate model with an-
nual time series for the major forcing factors based on IPCC
(Annex II: Climate System Scenario Tables, 2013). Our two-
layer model with a 1-year time step (and Euler method of
numerical integration) reacts rather too strongly to short-
term spikes in forcing, and thus we scale the volcanic forc-
ing to 70 % of the nominal value in order to give more re-
alistic simulations. We show some outputs of the model to-
gether with surface air temperature observations from Had-
CRUT (Morice et al., 2012) as a purely visual indication of
the model’s performance. We do not use these real tempera-
ture observations in any of our analyses, however.

For comparison with our simple model results, we also
present some results calculated from historical simulations
performed by climate models in the CMIP5 (Taylor et al.,
2012) and CMIP6 (Eyring et al., 2016) ensembles. For
CMIP5, we use results from 23 models obtained from the
Climate Explorer website (https://climexp.knmi.nl/, last ac-
cess: 20 May 2019). Where multiple simulations were per-
formed with a single model, we show all results (amounting
to 89 model runs in total), and these vary substantially due
solely to the sample of internal variability in each simulation.
Output from CMIP6 models was provided to the authors by
Martin Stolpe. Due to the highly variable size of initial con-
dition ensembles in this set of simulations, we limited use
to at most five simulations from each model, resulting in a
sample of 117 simulations from 31 models.

3 Unforced (internal) variability

3.1 Using scalar measures of variability to estimate S

Schwartz (2007) and Cox et al. (2018a) both summarised
the variability in the temperature record with a scalar mea-
sure that the authors argued (based on simple energy bal-
ance modelling) should be informative regarding the sen-
sitivity. Schwartz (2007) summarised the variability via
the characteristic decorrelation time constant τ = τ (1t)=
−1t/ ln(ρ1t ), where1t is an adjustable lag time, and ρ1t is
the autocorrelation coefficient of the temperature time series
at a time lag of 1t . The method of selecting 1t – and there-
fore the estimation of τ – was not presented in an entirely ob-
jective algorithmic form but for the simple one-layer climate
model that was considered; the expected value of τ calcu-
lated from a long unforced time series is independent of lag.
Cox et al. (2018a) argued that the function9 = σT /

√
− lnρ1

should be linearly related to the equilibrium sensitivity. In
this function, ρ1 is the lag-1 autocorrelation of the time series
of annual mean surface temperatures, and σT is the magni-
tude of interannual variability in these temperatures. 9 and
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Table 1. Adjustable parameters and default values.

Parameter Default value (prior) Description

S 3.0 (U [0, 10]) Equilibrium climate sensitivity (◦C)
λ −3.7/S Radiative feedback (W m−2 ◦C−1)
γ 0.7 (N (0.7,0.22)) Deep ocean heat uptake parameter (W m−2 ◦C−1)
ε 1.3 (N (1.3,0.32)) Deep ocean heat uptake efficacy
F2× 3.7 Forcing of 2×CO2 (W m−2)
Dm 75 Depth of mixed layer (m)
Cm 4.2× 106

× 0.7×Dm Heat capacity of mixed layer (J m−2 ◦C−1)
Cm 7.0 Heat capacity of mixed layer (W yr m−2 ◦C−1)
Dd 1000 Depth of deep ocean (m)
Cd 4.2× 106

× 0.7×Dd Heat capacity of deep ocean (J m−2 ◦C−1)
Cd 93 Heat capacity of deep ocean (W yr m−2 ◦C−1)
σ 0.05 (N (0.05,0.012)) Gaussian noise parameter (◦C)

τ are closely related and covary very similarly over a wide
range of sensitivity when other model parameters are held
fixed (not shown). Henceforth in this section we focus solely
on 9 as it is more precisely defined and has been recently
discussed in some detail (Williamson et al., 2019). However,
very similar results are also obtained when equivalent exper-
iments are performed using τ .

We now present some investigations into the relationship
between 9 and S in unforced simulations of the two-layer
model introduced in Sect. 2. We perform a multifactorial ex-
periment in which 1000-member ensembles of simulations
are integrated for both 150- and 1000-year durations, over
a range of S from 0 to 10 ◦C, and with γ either set to the
default value of 0.7 or, alternatively, set to 0, in which case
we recover the single-layer version of the model. All other
model parameters are held fixed at standard values in these
experiments. Since there is no forced trend in these experi-
ments, we do not include any explicit detrending step in these
analyses. However, the results are insensitive to detrending.

Figure 1 shows the results obtained when 9 is calculated
from the time series of annual mean surface temperatures
produced by these simulations. For 150-year simulations us-
ing the single-layer model, there is a strong linear relation-
ship between the mean value of 9 obtained and the sensi-
tivity of the model, just as Cox et al. (2018a) argued. How-
ever, Cox et al. (2018a) did not consider sampling variability,
that is to say, the precision with which this expected value
of 9 might be estimated from a finite time series. As our
results show, there is substantial uncertainty in the value of
9 obtained by individual runs, and there is also strong het-
eroscedasticity; that is to say, the variance in each ensemble
of 9 values increases markedly with sensitivity. This varia-
tion arises from the sequence of noise terms which generate
the internal variability in each simulation of the model and is
therefore an intrinsic aspect of the theoretical framework re-
lating 9 to S. For these unforced simulations, it seems quite
possible for a model with its sensitivity set to a value of 5 ◦C

or even higher to generate a time series which has a mod-
est value for 9 of say 0.1, even though the expected value
of 9 from such model simulations would be much higher.
Similarly to the results shown by Kirk-Davidoff (2009), an
accurate diagnosis of 9 could in principle be made with a
sufficiently long time series of internal variability, but the
sampling uncertainty only decreases with the square root of
the duration of the time series (as expected from the central
limit theorem), so this is unlikely to be of use in practical
applications with real data.

When we consider the two-layer model using the standard
parameter value of γ = 0.7, the situation is a little different.
In this case the relationship between sensitivity and9 is flat-
ter and more curved, with the expected value of 9 changing
slowly for S > 4 ◦C. The underlying explanation for this is
quite simple. Any small perturbation to the surface tempera-
ture is damped on the annual timescale by a relaxation factor
which varies in proportion to εγ −λ, and εγ is equal to 0.91
for standard parameter values. Therefore, when S is large,
changes in λ=−3.7/S have relatively little impact on the to-
tal damping, and thus both the magnitude and autocorrelation
of variability are relatively insensitive to further increases in
S. Williamson et al. (2019) also presented a theoretical anal-
ysis of this two-layer model in which it was argued that the
response of 9 was close to linear across the GCM parame-
ter range, and our result confirms this for sensitivity values
from around 2 to 4 or even 5 ◦C. However, the gradual cur-
vature for larger values results in a saturation of the response
of 9 to increases in S, and this, together with the increasing
sampling uncertainty, has consequences that will be shown in
subsequent experiments. In fact the relationship between 9
and the transient climate response (i.e. the warming observed
at the time of CO2 doubling under a 1 % per annum increase)
is more close to linear than the relationship between 9 and
S. Thus our work does not challenge the underlying analysis
that they presented but augments it with additional details.
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Figure 1. 9 estimated from 150-year time series for one- and two-
layer models. Grey results are for single-layer model, and black re-
sults are for two-layer model. Large dots show means of 1000 simu-
lations, with error bars indicating ±2 SD ranges for each ensemble.
Results are calculated at each integer value of sensitivity and offset
slightly for visibility.

We now directly consider the question of how useful an
observed value 9o can be as a constraint on the equilib-
rium climate sensitivity through Bayesian estimation. It is
not trivial to directly calculate the exact value of the like-
lihood P (9o

|2) for a given observed value 9o, as 9 is
itself a random variable arising from the stochastic model
and thus depends on the sequence of random perturbations
that were generated during the numerical integration of the
model. Therefore, we use here the technique known as ap-
proximate Bayesian computation (Diggle and Gratton, 1984;
Beaumont et al., 2002). This is a rejection-based sampling
technique in which samples are drawn from the prior distri-
bution, used to generate a simulated temperature time series,
and rejected if the value of9 calculated from this time series
does not lie within a small tolerance of the observed value.
The set of accepted samples then approximately samples the
desired posterior. We have no observations of long periods
of unforced climate variability with the real climate system,
so we perform a number of synthetic tests in which different
hypothetical values for 9o are tested.

Our experiments take the form of a perfect model scenario,
where the model is assumed to be a perfect representation
of the system under consideration, with no structural imper-
fections. Our uncertainties here are due solely to unknown
parameter values and internal variability noise. In these ex-
periments, we assume that 9 for the true system is calcu-
lated from a 150-year temperature time series of the unforced

Figure 2. Posterior estimates of sensitivity inferred by using obser-
vations of 9 to constrain parameters in the two-layer model. Top
panel: four solid-line pdf’s in blue, cyan, magenta, and green rep-
resent estimates based on 150-year unforced simulations, assuming
observations of 9o = 0.05, 0.1, 0.15, and 0.2 respectively, where
only S is uncertain with uniform prior. Dashed blue line represents
posterior estimate for 9o = 0.05 with additional parametric uncer-
tainties as described in Sect. 3.2. Horizontal lines and dots in “Un-
forced” central panel indicate 5 %–95 % ranges and median respec-
tively of these experiments. Horizontal lines and dots labelled as
“Forced (20th century)” are similar results based on forced simula-
tions of historical period as described in Sect. 4.1. Solid lines: only
S is uncertain. Dashed lines: multiple uncertain parameters.

system, without any observational error whatsoever. The re-
sults of four experiments – using values of 9o which range
from 0.05 to 0.2 in regular increments – are shown in Fig. 2.
There is not necessarily an immediate correspondence be-
tween these synthetic values and the observationally derived
value that Cox et al. (2018a) calculated, as we are using un-
forced model simulations here. Nevertheless, the results are
qualitatively interesting. With other model parameters set to
the default values, the four values of 9o used here corre-
spond to the expected value generated by 150-year integra-
tions with sensitivities of approximately 1, 2.5, 5, and 10 ◦C
respectively. The figure shows that in this experimental sce-
nario, 9 can only provide a tight constraint in the first case
where the sensitivity is very low. In this case, the 5 %–95 %
range of the posterior is an impressively narrow 0.6–1.7 ◦C.
For the case 9o

= 0.1, the equivalent probability interval is
1.8–8.1 ◦C, and for higher values of 9 the posterior is very
flat indeed with just the very lowest values of S excluded.
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Similar results are obtained when equivalent values of τ are
used as observational constraints.

Strictly, when considering the strength of the constraint
obtained from the variability, we should focus on the likeli-
hood P (9|S) rather than the posterior pdf P (S|9), since the
latter depends also on the prior, which is in principle indepen-
dent of the observations. The likelihood for different values
of S, which tells us the relative probability of any particular
sensitivity value generating the observation, can be directly
read off from Fig. 2 as the height of the appropriate den-
sity curve at the specific sensitivity value. In the experiment
performed with 9o

= 0.1, the maximum likelihood value is
achieved at a value of S = 2.5 ◦C, and the likelihood drops
by a factor of 10 at both S = 1.3 and S = 7.9 ◦C. Kass and
Raftery (1995) suggest that a likelihood ratio of 10 or more
between two competing hypotheses could be taken to repre-
sent “strong” evidence in favour of one over the other, so if
we adopt this linguistic calibration we could say that the ob-
servation of9o

= 0.1 represents strong evidence in favour of
S = 2.5 ◦C versus all values outside of the range 1.3–7.9 ◦C
(but conversely, does not represent strong evidence to dis-
criminate between any pair of values inside that range). It is
somewhat coincidental that this range seems quite similar to
the 5 %–95 % range of the posterior pdf as the philosophi-
cal interpretation of the ranges is rather different. There is
a strong skew in this range, which extends much further to-
wards higher values of S than lower ones, compared to the
maximum likelihood estimate. We stress that this skew is a
fundamental property of the physical model and is not due to
the Bayesian analysis paradigm.

3.2 Additional uncertainties

The pdf’s plotted in the top panel of Fig. 2 assume that all
model parameters other than S are known with certainty. In
reality, we have significant uncertainty as to what values we
should assign to several other parameters. We consider just
three of these: the ocean heat uptake parameter γ , the effi-
cacy or pattern effect parameter ε, and the internal noise pa-
rameter σ . Geoffroy et al. (2013a) fitted the two-layer model
to various GCM outputs in order to estimate parameter val-
ues including γ and ε, and based on these results we use as
priors for these parameters the distributions N (0.7, 0.2) and
N (1.3,0.3) respectively, which generously encapsulate their
results. Geoffroy et al. (2013a) did not consider internal vari-
ability, and thus we do not have such a solid basis for a prior
in σ and assume a comparable relative uncertainty of 20 %,
i.e. a prior of N (0.05, 0.01). When we repeat the previous
experiments but include these additional parametric uncer-
tainties, then for the experiment where we use 9o

= 0.05 as
a constraint, the posterior for S widens substantially from the
previous spread of 0.6–1.7 ◦C, to 0.6–4.9 ◦C as also shown as
the dashed blue line in Fig. 2. The largest factor generating
this substantial increase in uncertainty is due to the uncer-
tainty in σ . The equivalent posteriors using the larger obser-

vational values for9o also broaden somewhat, but this is less
visible in the results as they are of course always constrained
by the prior range.

3.3 Using the full time series

Although the results in Fig. 2 show that an observation of
9 taken from a short unforced simulation cannot tightly
constrain equilibrium sensitivity in this model (except per-
haps in the most exceptional of circumstances), it could still
be hoped that a more precise constraint could possibly be
gleaned by a more advanced analysis that uses some differ-
ent diagnostic of the time series. In this section, we show how
the total information of the time series can be used. By do-
ing this, we create the most optimistic possible scenario for
using internal variability to constrain equilibrium sensitivity
of this simple climate model.

This approach requires us to calculate the likelihood for
the full set of observations, P (O|2), where here O = T im,
i = 1 . . .N , is the full time series of annual surface tempera-
ture anomalies. Once the model parameters and forcing are
prescribed, the time series of surface temperature anomalies
is uniquely determined by the series of random noise pertur-
bations δi . Thus, in the absence of observational error, we
can invert this calculation to calculate (up to machine preci-
sion) the sequence of annual random noise perturbations δi ,
i = 1 . . .N that are required in order to replicate any given
observed temperature time series. This is why we selected a
model time step as long as 1 year, as it results in the num-
ber of observations being as large the number of noise terms
making this exact inversion possible. The probability of the
model (with a particular set of parameters) generating the
observed sequence is exactly the probability of the required
noise sequence being sampled. This value is readily calcu-
lated, since the joint density of these independent and iden-
tically distributed δi is simply the product of their individual
densities. This unusual approach, which we do not believe
has been previously implemented in this context, is possi-
ble here as we are assuming zero observational uncertainty.
With this exact likelihood calculation, the Bayesian estima-
tion process is straightforward. In the case where only sensi-
tivity is considered uncertain, it can be performed by direct
numerical integration, sampling the sensitivity on a fine reg-
ular grid and calculating the likelihood (and therefore poste-
rior) directly at these values.

It is worth emphasising that this calculation represents an
absolute best-case scenario for using the time series of tem-
perature anomalies as a constraint. There can be no diagnos-
tic or statistical summary of the observations that provides
more information than the full set of observations themselves
contain. Thus, we cannot hope to obtain a better constraint by
some alternative analysis of the temperature time series.

Figure 3 shows results obtained from this approach, in the
case where only S is considered uncertain. To aid visual com-
parability with Fig. 2, the y-axis scale is fixed at the same
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Figure 3. Posterior estimates for the climate sensitivity from
Bayesian estimation using the full time series of annual mean sur-
face temperatures. Main plot: results from 150-year unforced sim-
ulations as discussed in Sect. 3.3. Twenty replicates are performed
for each true sensitivity of 1, 2.5, and 5 ◦C as indicated by the colour
blue, cyan, and magenta respectively. Horizontal lines and dots im-
mediately below top panel show means of the 5 %–95 % range and
median of each set of results. Horizontal lines labelled “C20th”
show analogous results using simulations of historical period, with
only S uncertain or with five uncertain parameters as discussed in
Sect. 4.2.

value despite cutting the peaks of some pdf’s. It is not possi-
ble to define what a “typical” noise sequence might look like,
and therefore we plot 20 replications with different randomly
generated instances of internal variability for each sensitivity
value tested. It seems that the results may be a little more
precise than was obtained using 9 alone (as shown by the
pdf’s generally having higher peak densities), though this de-
pends on the specific sample of internal variability that was
obtained. It is still only in the case of the lowest sensitiv-
ity value of 1 ◦C that we reliably obtain a tight constraint.
With the true sensitivity of 2.5 ◦C, the posterior 5 %–95 %
range, averaged over the samples, is 1.9–7.0 ◦C, marginally
narrower than the 1.8–8.1 ◦C range obtained previously when
an equivalent9 value of 0.1 was used. When additional para-
metric uncertainties are considered in this unforced scenario,
the constraints again weaken, though not to quite such an ex-
tent as in Sect. 3.2 when only 9 is used as a constraint. We
do not show these results here.

Thus, there appears to be the potential for internal variabil-
ity, as represented by the full temperature time series, to pro-
vide a slightly better constraint than that obtained by a sum-
mary statistic alone, but the improvement is marginal, and
even our optimal calculation, which uses the exact likelihood

of the full time series, cannot accurately diagnose equilib-
rium sensitivity except when the true value is very low. These
results again show a skew similar to that obtained when 9
was used as the constraint in Sect. 3.1 and 3.2. Thus this non-
Gaussian likelihood is again an inherent property of the phys-
ical model and not an artefact of the analysis. We mention
again that these calculations are made under the three opti-
mistic assumptions that (a) the model is perfect and we have
exact knowledge of all other model parameters, (b) we know
the forcing to be zero over this time period, and (c) there is
no observational error.

4 Forced variability

While the theoretical underpinning of Cox et al. (2018a) was
originally based on the properties of unforced internal vari-
ability, Cox et al. (2018b) acknowledged that their approach
may have benefited from some signature of forced variabil-
ity entering into their calculations. In order to calculate their
9 statistic, they applied a windowed detrending method in
order to focus on variability of both model simulations and
observations of the historical period. However, the window
length of 55 years that they used was justified primarily in
empirical terms and cannot remove shorter-term variations
in forced response.

In this section, we perform a series of analyses based on
historical forced simulations, in order to investigate more
fully the potential for such forced effects to improve the con-
straint. We force the climate model with annual time series
for the major forcing factors based on IPCC (Annex II: Cli-
mate System Scenario Tables, 2013). Our two-layer model
with a 1-year time step (and Euler method of numerical in-
tegration) reacts rather too strongly to short-term spikes in
forcing, and thus we scale the volcanic forcing to 70 % of
the nominal value in order to give more realistic simulations.
In some of the following experiments, we consider aerosol
forcing as a source of uncertainty in addition to that arising
from the internal parameters of the model. This uncertainty
is implemented via a scaling factor denoted by α, which is
uncertain but constant in time, applied to the original aerosol
forcing time series. In these cases, our prior distribution for
α is N (1,0.52).

Figure 4 presents 18 simulations from the model, consist-
ing of five instances of internal variability for each of three
different parameter sets, which were chosen to give reason-
able agreement with observational data, and additionally one
simulation for each of these parameter sets in which internal
variability was not included in order to show the pure forced
response. These simulations are shown merely to indicate the
typical behaviour of the model under historical forcing es-
timates and are not directly relevant to our analyses. Note
that the observations of the real climate system which are
also plotted here include observational error (estimated to be
roughly ±0.05 ◦C at the 1 standard deviation level), whereas
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Figure 4. Simulations of instrumental period with two-layer model.
Thick lines are forced response excluding internal variability; thin
lines are five replicates of each parameter set including internal
variability. Blue lines: S = 1.78 ◦C, γ = 0.7 W m−2 ◦C−1, ε = 1.3.
Cyan lines: S = 2.5 ◦C, γ = 1.0 W m−2 ◦C−1, ε = 1.7. Magenta
lines: S = 5 ◦C, γ = 1.0 W m−2 ◦C−1, ε = 1.7, α = 1.7. Black line
is HadCRUT data.

the model output is presented as an exact global temperature.
Thus it is to be expected that the model results are somewhat
smoother and less variable than the observations, although it
may also be the case that the two-layer model has insufficient
variability. For each of these three simulations without inter-
nal variability, the RMS differences between model output
and observations is 0.13 ◦C.

When we hold other parameters at default levels, best
agreement between model and data (defined here simply by
RMS difference between the two time series) is achieved for
a rather low sensitivity of 1.78 ◦C. If the γ and ε parame-
ters are increased slightly above their defaults, then we can
achieve an equally good simulation (again as measured by
RMS difference) with a higher value for sensitivity of 2.5 ◦C.
If, additionally, aerosol forcing is also increased above the
default value, then a higher sensitivity still of 5 ◦C achieves
an equally good match to the observed temperature time se-
ries at the global scale. While there are hemispheric differ-
ences in these forcings that may provide some additional in-
formation (Aldrin et al., 2012), these simulations help to il-
lustrate why it has been so challenging to effectively con-
strain equilibrium sensitivity from the long-term observed
warming.

Figure 5. 9 estimated from historical simulations from two-layer
model. Grey results are based on simulations where only S is con-
sidered uncertain. Black results additionally account for uncertainty
in γ , ε, σ , and α. Large dots show means of 1000 simulations, with
error bars indicating±2 SD ranges for each ensemble. Blue and red
crosses indicate results generated by CMIP5 and CMIP6 models re-
spectively, together with the best-fit regression lines as dashed lines,
in matching colours.

4.1 Using Ψ

In order to assess what we can learn about sensitivity from
the variability in historical temperature observations, we first
consider the utility of9 calculated from simulations over this
period. Cox et al. (2018a) proposed that the effect of forcing
over this interval could be effectively removed by a process
of windowed detrending. Figure 5 shows results analogous
to the two-layer simulations in Fig. 1 but using forced sim-
ulations of the historical period rather than unforced control
simulations and, therefore, with 9 calculated via the win-
dowed detrending method of Cox et al. (2018a). One very
minor discrepancy with the calculations presented in that pa-
per is that our simulations only extend to 2012 (this being
the limit of the forcing time series that we are using), and
therefore we omit the last 4 years of the time period that they
used. This does not significantly affect any of our results. We
do not consider one-layer simulations here as this version of
the model is known to provide poor simulations of historical
changes (Rypdal and Rypdal, 2014).

Grey dots and error bars indicate results obtained when
only S is considered uncertain. These results are qualitatively
similar to those obtained by the unforced two-layer simu-
lations in Fig. 1, in that they exhibit a nonlinear and het-
eroscedastic relationship that levels off for large values of
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S. The values of 9 obtained at each value of S are how-
ever somewhat larger in the forced experiments, which sup-
ports the claims of Brown et al. (2018) and Po-Chedley et al.
(2018) that the windowed detrending has not been wholly ef-
fective in eliminating all influence of forcing. As mentioned
previously, analysis of GCM outputs indicate significant un-
certainty in other model parameters, and therefore we have
performed additional ensembles of simulations which ac-
count for uncertainty both in model parameters and aerosol
forcing. These uncertain parameters – and their priors – are
the same as in Sect. 3.2, with the addition here that we also
consider uncertainty in the aerosol forcing through the scal-
ing parameter α. The combined effect of these uncertainties
has little systematic effect on the mean estimate of 9 but
slightly increases the ensemble spread. Interestingly, in con-
trast to our earlier experiments, no single factor appears to
have a dominant effect here.

Blue and red crosses also shown in Fig. 5 show results
obtained from the CMIP5 and CMIP6 ensembles. The CMIP
models appear to generate slightly lower values of9 than the
two-layer model does with the same sensitivity, although the
results seem broadly compatible. Reasons for the difference
may include biases in parameters of the two-layer model,
structural limitations, or differences in the forcings used. Al-
though we are not replicating the emergent constraint ap-
proach here, we do note that there is a significant correlation
in the CMIP5 ensemble results shown here between their sen-
sitivities and9 values. However, the relationship seen here is
weaker than that obtained by Cox et al. (2018a) for a differ-
ent (though overlapping) set of models and explains a lower
proportion of the variance. This remains true whether we per-
form the regression with S as predictor, as suggested by our
figure, or when using 9 as predictor as in Cox et al. (2018a).
For CMIP6, the correlation is insignificant.

Figure 2 shows results generated when various hypotheti-
cal values for 9o are used to constrain model parameters for
historical simulations. As before, we test sensitivity values
of 1, 2.5, and 5 ◦, which here correspond to values for 9o of
0.1, 0.18, and 0.25 respectively. As in the previous experi-
ments, the smallest value of 9o generates a tight constraint
with a 5 %–95 % range of 0.7–1.7 ◦C when only S is con-
sidered uncertain. This grows to 1.8–7.2 ◦C for 9o

= 0.18,
and the larger value of 9o

= 0.25 provides very little con-
straint. When the additional parametric and forcing uncer-
tainties are considered, the tightest range corresponding to
9o
= 0.1 grows a little to 0.7–2.0 ◦C, and the9o

= 0.18 case
spreads to 1.8–8.8 ◦C.

When we use the observational value of 9o
= 0.13 (cal-

culated from HadCRU data) and include multiple parametric
uncertainties, the 17 %–83 % posterior range is 1.3–2.7 ◦C,
and the 2.5 %–97.5 % range is 0.9–5.1 ◦C. These ranges are
somewhat larger than the equivalent results presented by Cox
et al. (2018a), which were 2.2–3.4 ◦C and 1.6–4.0 ◦C respec-
tively, despite the highly optimistic perfect model scenario
considered here.

4.2 Using the full time series

Finally, we repeat the approach of Sect. 3.3 and use the full
information of the time series, by the same method of invert-
ing the model to diagnose the internal variability noise that
is required to generate the observed temperature time series.
Since we are interested solely in variability, we only consider
the temperature residuals after detrending. We use a sim-
ple linear detrending over the period 1880–2012, which will
leave a signature primarily due both to volcanic events and
also the contrasting temporal evolution of negative aerosol
forcing and positive greenhouse gas forcing, which both gen-
erally increase throughout this period but which exhibit dif-
ferent multidecadal patterns.

The calculation is similar to that of Sect. 3.3, but there are
some minor details which are worth mentioning. Although
the detrending is performed over the interval 1880–2012, we
initialise the simulations in 1850 to allow for a spin-up. In
contrast to Sect. 3.3 where detrending was not performed,
knowledge of the residuals after detrending does not actually
enable an exact reconstruction of the internal variability in
the model simulation, as any random trend in this internal
variability will have been removed by detrending. In fact a
whole family of different model simulations will be aliased
onto the same residuals. Therefore, our inversion only truly
calculates the noise perturbations after the removal of the
component that generates any linear trend. This is not a sig-
nificant problem for the likelihood calculation as the effect of
this aliasing is minor, and its dependence on model parame-
ters is negligible.

The results of multiple replicates are shown in Fig. 3, in
which we consider first the case where only S is uncertain
and then our larger set of parametric uncertainties. In the
case where only S is unknown, the full time series of de-
trended residuals provides strong evidence on S, which can
as a result be tightly constrained except perhaps when it takes
a high value such as 5 ◦C. For S = 2.5 ◦C, the posterior 5 %–
95 % range is typically under 2 ◦C in width, with the aver-
age of our samples being 1.9–3.5 ◦C. When multiple uncer-
tainties are considered, the constraint is however markedly
weakened. For a true sensitivity of S = 2.5 ◦C, the posterior
5 %–95 % range is typically over 4◦, at 1.6–6.0 ◦C, with a
“likely” 17 %–83 % range of 2.2–4.1 ◦C. As in the unforced
experiments, these optimal constraints appear somewhat nar-
rower than can be obtained by using the 9 statistic but are
not necessarily tight enough to be compelling in themselves.

5 Conclusions

We have explored the potential for using interannual temper-
ature variability in estimating equilibrium sensitivity. While
– as Williamson et al. (2019) argued – there is generally a
quasi-linear relationship between S and the expected value of
9 = σT /

√
− lnρ1 over a reasonable range of S in the simple

energy balance model, this relationship saturates for higher

https://doi.org/10.5194/esd-11-709-2020 Earth Syst. Dynam., 11, 709–719, 2020



718 J. D. Annan et al.: Variability and sensitivity

S, and furthermore, sampling variability is significant and
highly heteroscedastic. These properties undermine the the-
oretical basis for the linear regression emergent constraint
approach which was presented by Cox et al. (2018a), as
the ordinary least squares regression method relies on a lin-
ear relationship with homoscedastic errors. The behaviour of
the model instead results in an inherently skewed likelihood
P (9|S) with a long tail to high values for S. Thus, while the
9 statistic can indeed be informative on S, the constraint it
provides based on internal variability in the case of unforced
simulations is rather limited. Furthermore, the CMIP5 and
CMIP6 ensembles exhibit quite different relationships in the
regression framework, suggesting a lack of robustness of the
original analysis. We have shown how it is possible in princi-
ple to extract the full information from time series of annual
temperatures, by calculating the exact likelihood for the com-
plete set of these observations. However, even in this scenario
of a perfect model with a few well-characterised parametric
uncertainties and no observational uncertainty on the tem-
perature time series, the constraint on sensitivity is seriously
limited by the variability inherent to the model. It is only in
the case where the true value of the sensitivity is very low that
such an approach can generate a tight constraint. For exam-
ple, if the true sensitivity takes a moderate value of 2.5 ◦C,
then we could only expect to generate a constraint with a
typical 5 %–95 % range of around 1.9–6.8 ◦C. As was the
case when using 9, estimates generated from the full time
series are rarely close to symmetric and instead are typically
skewed with a long tail to high values. This skew is an inher-
ent property of the physical model that defines the likelihood
and not an artefact of our analysis methods.

Forced variability, such as that occurring during the instru-
mental period, does provide additional information in our ex-
periments, and therefore we could in theory hope to calculate
a narrower posterior range, with a typical width of around
4 ◦C (e.g. 1.8–6.0 ◦C) when the true sensitivity is 2.5 ◦C. It
must however be emphasised that these calculations rely on
very optimistic assumptions and therefore represent a best
case that is unlikely to be realised in reality. Nevertheless,
our results do suggest that variability can inform on the sen-
sitivity and may generate a useful constraint in addition to
that arising from the longer-term observed trend.
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