

Supplement of

Impact of environmental changes and land management practices on wheat production in India

Shilpa Gahlot et al.

Correspondence to: Somnath Baidya Roy (drsbr@iitd.ac.in)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Dynamic C3 crop model in ISAM

There are six stages in the growth of C3 crop that are modeled in ISAM (Song et al. 2013). The concept of Growing Degree Days (GDD) is used to define wheat growth and divide the wheat-growing season into different phenological stages. Daily GDD is calculated as the difference between daily average air temperature and base temperature since the planting day. Each stage is governed by heat requirement range (fraction of maximum GDD) and switches to the next stage when the heat unit index (=accumulated GDD/maxGDD) exceeds the maximum limit for that stage. GDD is calculated daily and accumulated GDD is calculated as cumulative GDD that increases along the growing season.

During emergence, the seeds stay below the ground, increase in size and gain weight. The emergence of the shoot from the ground marks the beginning of the second stage, the initial vegetative stage. Maximum carbon assimilated is allocated to the shoot in this stage and leads to rapid increase in LAI and a small increase in length of the stem. The third stage, normal vegetative stage, is marked with a rapid increase in length of the stem and the roots to support vertical growth of the plant. The maximum LAI of the crop is reached by the end of the third stage. The fourth stage, initial reproductive stage, marks the onset of reproductive stage in the crop and development of storage organs. Allocation of assimilated carbon to storage organs begins and vegetative development of the plant stops. The fifth stage, post-reproductive stage, marks the solidification of grains and increased nutrient allocation to the grains while ensuring capable roots to support the plant. There are other factors like light availability, temperature stress and nitrogen availability that act as limiting factors to the crop growth and nutrient allocation is promoted in the crop in a way that the impact of these factors is minimized. For instance, there is a greater allocation of carbon to the roots when the crop experiences water stress to ensure more vertical development of roots to extract water from deeper soil levels. Finally, the crop is ready to be harvested when the heat requirement of the crop is fulfilled (GDD= maxGDD). Each growth stage is also marked with a maximum number of days that the plant can spend in each stage to ensure that wheat grown in all climatological regions enters each stage based on the defined conditions for each phenology stage.

Total carbon assimilation by vegetation is calculated at hourly intervals using the C3 photosynthesis (Song et al., 2013) after taking into account the water, nutrient and light availability. Maintenance respiration and growth respiration losses are considered as a part of carbon lost to the environment. Fractions of net carbon assimilated after accounting for respiratory losses are allocated to different plant pools (leaves, stem, coarse root, fine root, and grain) based on the growth stage.

Table S1: List of all variables/parameters and their values for the spring wheat model. The model equations for C3 crops are described in Song et al. 2013.

Symbol	Definition	Value	Source
V_{cmax25}	Maximum carboxylation rate at the	130	
	reference temperature of 25°C	$\mu mol \ m^{-2}s^{-1}$	
T _{high}	$\frac{1}{2}$ point of high temperature	308 K	Lokupitiya et al. 2009
5	inhibition function in carbon		
	assimilation		
Thase	Base atmospheric temperature for	278.15 K	Gill et al. 2014
Dusc	calculating daily GDD		
T _{soil}	Base soil temperature for crop	290.52 K	
	planting		
GDD _{max}	Required total heat above base	1800 [oC]	
	temperature		
HUI _{day}	Heat Unit Index of the <i>i</i> th day	variable	
T_{avg}	Average daily air temperature	variable	
HUI _{v1}	Minimum heat unit index during	0.07	This study
	the initial vegetative period		
HUI_{v2}	Minimum heat unit index during	0.27	This study
	the normal vegetative period		
HUI_{r1}	Minimum heat unit index during	0.51	This study
	the reproductive period		
HUI_{r2}	Minimum heat unit index during	0.70	This study
	the post-reproductive period		
$D_{max_{emer}}$	Maximum number of days in	7	This study (calibrated)
	emergence period		
$D_{max_{v1}}$	Maximum number of days in initial	30	This study(calibrated)
	vegetative period	4.6	
$D_{max_{v2}}$	Maximum number of days in	46	This study(calibrated)
D	Normal vegetative period	16	$\mathbf{T} = \{1, \dots, n\}$
$D_{max_{r1}}$	Maximum number of days in	16	This study(calibrated)
D	Maximum number of days in post	25	This study (calibrated)
$D_{max_{r2}}$	reproductive period	55	This study(calibrated)
C	Initial carbon storage in seed as	15 gC	
©storage_ref	referenced seeding rate	15 gC	
Reading	Referenced seeding rate	1011715	
"seea_rej	Tereferenced second rule	seeds/acre	
CNleaf	C:N ratio of leaf	15	Drewniak et al. 2013
CNstom	C:N ratio of stem	50	Drewniak et al. 2013
CNroot	C:N ratio of root	30	Drewniak et al. 2013
CNarain	C:N ratio of grain	40	Drewniak et al. 2013
Ashoot -	Allocation fraction for shoot during	0.60	This study(calibrated)
lisitoste	emergence period		
Aroota	Allocation fraction for root during	0.40	This study(calibrated)
	emergence period		
Al_{n1}	Allocation fraction for leaves	0.45	This study(calibrated)
	during initial vegetative period		
As_{v1}	Allocation fraction for stem during	0.35	This study(calibrated)
	initial vegetative period		••• /

Ar _{v1}	Allocation fraction for roots during	0.20	This study(calibrated)
A 1	Allocation fraction for losues	0.58	This study (solibrated)
$A\iota_{v2}$	during normal vagatative period	0.38	This study(canorated)
Ac	Allocation fraction for stem during	0.32	This study(calibrated)
A_{v2}	normal vegetative period	0.52	This study(canorated)
Ar -	Allocation fraction for roots during	0.10	This study(calibrated)
<i>Av</i> 2	normal vegetative period	0.10	This study(canorated)
Ala	Allocation fraction for leaves	0.00	This study(calibrated)
ⁿ r ₁	during reproductive period	0.00	This study (canorated)
Asi	Allocation fraction for stem during	0.05	This study(calibrated)
¹¹³ r1	reproductive period	0.05	This study (cultorated)
Ar	Allocation fraction for roots during	0.10	This study(calibrated)
	reproductive period	0.10	
Aq_{r1}	Maximum allocation fraction for	0.85	This study(calibrated)
-371_{max}	grains during reproductive period		
Agr1	Allocation fraction for grains	variable	This study
0/1	during reproductive period		5
Al _{r2}	Allocation fraction for leaves	0.00	This study(calibrated)
. 2	during post-reproductive period		
As _{r2}	Allocation fraction for stem during	0.00	This study(calibrated)
	post-reproductive period		
Ar_{r2}	Allocation fraction for roots during	0.05	This study(calibrated)
	post-reproductive period		
Ag_{r2max}	Allocation fraction for grains	0.95	This study(calibrated)
mux	during post-reproductive period		
Ag_{r2}	Allocation fraction for grains	variable	This study
	during post-reproductive period		
T_{min}^{stress}	Minimum temperature for inducing	25°C	Deryng et al. 2014
	heat stress in the crop		
T_{max}^{stress}	Maximum temperature for wheat to	35°C	Deryng et al. 2014
	have non-zero daily grain growth		
	rate		
Rt _{high}	Daily death rate of leaves from heat	variable	This study
	stress		
SLA	Specific Leaf Area	45 m ₂ /kgC	This study
H _a	Maximum canopy height	0.95 m	Drewniak et al. 2013
phen	Phenology Stage	variable	
$T_{stress_{fact}}$	Daily heat stress factor due to high T	variable	
	lavg		
dav	Julian day	variable	
Rt	Maximum death rate of green	variable	
n' max	leaves due to heat stress		
LAL	Maximum LAI	7.0	Drewniak et al. 2013
max			

Table S2: Climatology based planting day criteria for each grid cell. (*Ave	rage
minimum temperature based on 1901-1950 climatology).	

Minimum temperature* of region (T _{airmin} , K)	Criteria	Notation	Spatial regions represented
<i>T_{airmin}</i> < 275.0	- Julian day > 260 (September 17) - Average of last 7 day air temperature < 24.81°C	day > 260 T _{air} (7 days) < 297.96 K	 Northern parts of India Indo-Gangetic Plains
$275.0 \le T_{air_{min}}$ < 277.5	- Julian day > 260 (September 17) - Average of last 7 day air temperature < 22.81 _o C - Average of last 30 days precipitation < 20 mm	day > 260 T _{air} (7 days) < 295.96 K Prec(30 days) < 20 mm	- Parts of eastern India where rice is harvested a few months ahead of wheat plantation on the same land.
$T_{air_{min}} \ge 277.5$	 Julian day > 260 (September 17) Average of last 7 day air temperature < 32.01_oC Average of last 30 days precipitation < 100 mm 	day > 260 T _{air} (7 days) < 305.16 K Prec(30 days) < 100 mm	- Central India and parts of southern India.

Dataset/Proces	Equation
s/Variable	
Heat Stress	$\left(\begin{array}{c} Ag_{r1/r2_{max}}(phen), & if T_{avg} < T_{min}^{stress} \end{array}\right)$
	$Ag_{r1/r2}(phen) = \begin{cases} Ag_{r1/r2_{max}}(phen) * \frac{(35 - T_{avg})}{12}, & T_{min}^{stress} \le T_{avg} \le T_{max}^{stress} \end{cases}$
	$\begin{array}{c} 0, \\ 0, \\ 0, \\ 0 \end{array} \qquad if T_{avg} > T_{max}^{stress} \end{array}$
	Eq. S1
	$\int 1, \qquad if T_{avg} < T_{min}^{stress}$
	$T_{stress_{fact}}(day) = \begin{cases} \frac{(35 - T_{avg})}{10}, & T_{min}^{stress} \le T_{avg} \le T_{max}^{stress} \end{cases}$
	$\begin{bmatrix} 0 \\ 0, \end{bmatrix} if T_{avg} > T_{max}^{stress}$
	Eq. S2
	$Rt_{high}(day) = Rt_{max} * (1 - T_{stress_{fact}}(day))^3$
Annual nitrogan	Eq. S3
fertilizer data	$frac_i = \frac{fort_{intel}(1000)}{fert_{total_i}(2000)}$
(0.5° X 0.5°) from 1900 to 2005	Eq. S4
	$fert_{wheat_i}(yr) = frac_i * fert_{total_i}(yr)$
Annual wheat area	$Area_{wheat} (vr) = \sum_{k=1}^{all districts} Area_{wheat} (vr)$
data	Eq. S6
(0.5° X 0.5°) from 1997 to 2014	$f_{ir} = Area_{wheatstate}(yr)$
	$Jr_{state_{yr}} = \frac{1}{Area_{wheat_{state}}(2000)}$
	Eq. 57
	$TWA_{i}(yr) = fr_{state_{yr}} * TWA_{i}(2000), \forall i \in state$
Annual area	$AEI_{max}(vr)$
equipped for	$\int (AEI_{HVDF}^{IR} (yr) + AEI_{HVDF}^{CP} (yr) + AEI_{EARTHSTAT}^{IR} (yr) + AEI_{EARTHSTAT}^{CP} (yr))/4,$
$(0.5_{\circ} \ge 0.5_{\circ})$	$if 1997 \le yr \le 2005$
from 1997 to 2014	$= \begin{cases} fr & - Area_{IRRI_AR}(yr) \end{cases}$
101111997 to 2014	if yr > 2005
	$\left(AEI_{avg_i}(yr) = AEI_{avg_i}(2005) * fr_{IRRI_AR_{yr}}\right)$
Annual actual	$\sum_{i=1}^{all grids} \left\{ \left[\operatorname{Prod}_{S_{CON}}(yr)_{i}^{*} AEI_{avg}(yr)_{i} \right] + \left[\operatorname{Prod}_{S_{IDPI}}(yr)_{i}^{*} \left[TWA(yr)_{i} - AEI_{avg}(yr)_{i} \right] \right\}$
wheat production	$Prod_{act}(yr) = \frac{\sum_{i=1}^{all \ grids} TWA(yr)_i}{\sum_{i=1}^{all \ grids} TWA(yr)_i}$
Turner (1	Eq. S10
factor on wheat	$Impact_{factor}(vr) = Prod(S_{CON}(vr)) - Prod(S_{$
production	Eq. S11

Table S3: List of equations for spring wheat specific processes and variables used in this study. The variables used here are defined in Table S4.

Symbol	Definition	Source
yr	Year	
i	Variable representing number of grids in	
	study area	
k	Variable representing number of districts in a	
	state	
<i>Prod_{act}</i>	Actual annual wheat production of India	
S _{CON}	Control run with all input forcings	
	(atmospheric CO ₂ , temperature, nitrogen	
	fertilizer, irrigation) varying with time	
S _{<factor></factor>}	Simulations with all but one input forcing	
	(factor) varying with time	
$Prod_{S_{CON}}$	Wheat production from S_{CON} case (irrigated	
	case)	
Prod _{S<factor></factor>}	Wheat production from $S_{< factor>}$ case	
$Area_{wheat}(yr)$	Annual wheat harvested area at district (<i>k</i>)	MAFW, India
Whoulk O	level	
Area _{wheatstate}	Annual wheat harvested area at state level	
mieuestute	evaluated by summing up data from all	
	districts in a state	
fr _{stateur}	Fraction of annual wheat harvested area at	
yı	state-level for year yr with that of year 2000.	
TWA _i	Total wheat harvested area in <i>i</i> th grid	This study
AEIIR	Gridded Area Equipped for Irrigation (AEI)	Siebert et al. 2015
meernali	with HYDE 3.1 Final as dataset used for	
	downscaling and maximizing consistency	
	with AEI_IR	
AEIHYDEFINAL	Gridded Area Equipped for Irrigation (AEI)	Siebert et al. 2015
TINAL	with HYDE 3.1 Final as dataset used for	
	downscaling and maximizing consistency	
	with AEI_CP	
AEI ^{IR} EARTHSTAT _i	Gridded Area Equipped for Irrigation (AEI)	Siebert et al. 2015
	with EARTHSTAT as dataset used for	
	downscaling and maximizing consistency	
CD	with AEI_IR	
AEI _{EARTHSTAT} i	Gridded Area Equipped for Irrigation (AEI)	Siebert et al. 2015
	with EARTHSTAT as dataset used for	
	downscaling and maximizing consistency	
	With AEI_CP	
AEI _{avg}	Average AEI for each grid cell	
frac _i	Fraction of wheat to total fertilizer amount for	
	th grid	
fert _{wheati} (yr)	Fertilizer amount added to wheat for <i>i</i> th grid	
	for the year <i>yr</i>	
fert _{totali} (yr)	Total fertilizer amount added in <i>i</i> th grid for	
	the year yr	
Impact _{factor}	Difference between production from S_{CON}	
	and $S_{< factor >}$	

Table S4: Definition of all variables and parameters used in the equationspresented in Table S3.

Table S4: Temporal variations of different input forcings and their impacts on annual wheat production in SWE1 during the study period (1980-2016).

Input Foreing (i)	Pata of change of <i>i</i> in	Pote of change in annual	Change in annual wheat
mput Forcing (<i>i</i>)	Kate of change of <i>t</i> in	Kate of change in annual	Change in annual wheat
	study period	wheat production	production per unit
			change in <i>i</i>
Elevated atmospheric CO ₂	1.82a ppm/yr	0.46a Mt/yr	0.26a Mt/ppmCO2
level			
Average growing season	0.03a oC/yr	-0.18a Mt/yr	-3.52b Mt/0C
temperature*	-		
Average water demand	356.27a mm/yr	0.17a Mt/yr	0.35b Mt/1000 mm
Average nitrogen fertilizer	3.34a kgN/ha/yr	0.24a Mt/yr	0.07a Mt/kgN/ha
per unit area			

a Values are significant at 99%

b Values are significant at 90%

Table S5: Temporal variations of different input forcings and their impacts onannual wheat production in SWE2 during the study period (1980-2016).

Input Forcing (<i>i</i>)	Rate of change of <i>i</i> in study period	Rate of change in annual wheat production	Change in annual wheat production per unit change in <i>i</i>
Elevated atmospheric CO ₂ level	1.82a ppm/yr	0.03a Mt/yr	0.02a Mt/ppmCO2
Average growing season temperature*	0.04a oC/yr	0 Mt/yr	-0.03 Mt/oC
Average water demand	18.22ь mm/yr	0 Mt/yr	0.04b Mt/1000 mm
Average nitrogen fertilizer per unit area	3.09a kgN/ha/yr	0.02a Mt/yr	0.01 Mt/kgN/ha

a Values are significant at 99%

b Values are significant at 90%

Table S6: Temporal variations of different input forcings and their impacts on annual wheat production in SWE3 during the study period (1980-2016).

Input Forcing (<i>i</i>)	Rate of change of <i>i</i> in	Rate of change in annual	Change in annual wheat
	study period	wheat production	production per unit
	F	······ F-·····	change in <i>i</i>
Elevated atmospheric CO ₂	1.82a ppm/yr	0.02a Mt/yr	0.01a Mt/ppmCO2
level			
Average growing season	0.03a oC/yr	-0.01 Mt/yr	-0.12 Mt/oC
temperature*			
Average water demand	-10.95 mm/yr	0.01 Mt/yr	0.61a Mt/1000 mm
Average nitrogen fertilizer	3.03a kgN/ha/yr	0 Mt/yr	0 Mt/kgN/ha
per unit area			

a Values are significant at 99%

b Values are significant at 90%

Table S7: Temporal variations of different input forcings and their impacts on annual wheat production in SWE4 during the study period (1980-2016).

Input Forcing (i)	Rate of change of <i>i</i> in	Rate of change in annual	Change in annual wheat
	study period	wheat production	production per unit
			change in <i>i</i>

Elevated atmospheric CO ₂	1.82a ppm/yr	0.03a Mt/yr	0.02a Mt/ppmCO2
level			
Average growing season	0.02a oC/yr	-0.06a Mt/yr	-0.36 Mt/oC
temperature*			
Average water demand	2.87 mm/yr	0 Mt/yr	0.07 Mt/1000 mm
Average nitrogen fertilizer	2.54a kgN/ha/yr	0 Mt/yr	0 Mt/kgN/ha
per unit area			_

a Values are significant at 99%
b Values are significant at 90%

Table S8: Temporal variations of different input forcings and their impacts onannual wheat production in SWE5 during the study period (1980-2016).

Input Forcing (<i>i</i>)	Rate of change of <i>i</i> in	Rate of change in annual	Change in annual wheat
	study period	wheat production	production per unit
		_	change in <i>i</i>
Elevated atmospheric CO ₂	1.82a ppm/yr	0.12a Mt/yr	0.07a Mt/ppmCO2
level			
Average growing season	0.02a oC/yr	-0.14a Mt/yr	-1.36 Mt/oC
temperature*			
Average water demand	72.77 _a mm/yr	0.05b Mt/yr	0.41 Mt/1000 mm
Average nitrogen fertilizer	2.84a kgN/ha/yr	0.05a Mt/yr	0.01b Mt/kgN/ha
per unit area			

^a Values are significant at 99%

b Values are significant at 90%

References

- Deryng, D., Conway, D., Ramankutty, N., Price, J., and Warren, R.: Global crop yield response to extreme heat stress under multiple climate change futures, Environ. Res. Lett., 9, 034011, 2014.
- Drewniak, B., Song, J., Prell, J., Kotamarthi, V. R., and Jacob, R.: Modeling agriculture in the Community Land Model, Geosci. Model Dev., 6, 495-515, 2013.
- Gill, K. K., Babuta, R., Kaur, N., Kaur, P., and Sandhu, S. S.: Thermal requirement of wheat crop in different agroclimatic regions of Punjab under climate change scenarios, Mausam, 65(3), 417-424, 2014.
- Lokupitiya, E., Denning, S., Paustian, K., Baker, I., Schaefer, K., Verma, S., Meyers, T., Bernacchi, C. J., Suyker, A., and Fischer, M.: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve landatmosphere carbon exchanges from croplands, Biogeosciences, 6, 969-986, 2009.
- Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the extent of irrigated land from 1900 to 2005, Hydrol. Earth Syst. Sc., 19, 1521-1545, 2015.
- Song, Y., Jain, A. K., and McIsaac, G. F.: Implementation of dynamic crop growth processes into a land surface model: evaluation of energy, water and carbon fluxes under corn and soybean rotation, Biogeosciences, 10, 8039-8066, 2013.