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Abstract. Cumulative emissions budgets and net-zero emission target dates are often used to frame climate ne-
gotiations (Frame et al., 2014; Millar et al., 2016; Van Vuuren et al., 2016; Rogelj et al., 2015b; Matthews et al.,
2012). However, their utility for near-term policy decisions is confounded by uncertainties in future negative
emissions capacity (Fuss et al., 2014; Smith et al., 2016; Larkin et al., 2018; Anderson and Peters, 2016), in the
role of non-CO2 forcers (MacDougall et al., 2015) and in the long-term Earth system response to forcing (Ru-
genstein et al., 2019; Knutti et al., 2017; Armour, 2017). Such uncertainties may impact the utility of an absolute
carbon budget if peak temperatures occur significantly after net-zero emissions are achieved, the likelihood of
which is shown here to be conditional on prior assumptions about the long-term dynamics of the Earth system. In
the context of these uncertainties, we show that the necessity and scope for negative emissions deployment later
in the century can be conditioned on near-term emissions, providing support for a scenario framework which
focuses on emissions reductions rather than absolute budgets (Rogelj et al., 2019b).

1 Introduction

The climate policy discussion has adopted some convenient
frameworks which act as proxies for the drivers and conse-
quences of climate change. For example, it is broadly as-
sumed that climate risks scale with global mean temperature
(O’Neill et al., 2017). International climate agreements have
thus been framed in this context (United Nations, 2015), ne-
cessitating Earth system parameters which relate future emis-
sions trajectories to temperatures. This relationship is often
framed through the transient climate response to cumulative
carbon emissions (TCREs – the ratio of the globally aver-
aged transient CO2-induced surface temperature change per
unit carbon dioxide emitted; Rogelj et al., 2019a; Allen et al.,
2009; Millar et al., 2016; Matthews et al., 2009; Gillett et al.,
2013).

This near-linear relationship between cumulative emis-
sions and surface temperatures is seen in many climate sim-
ulations on decadal to century timescales, providing a basis
for cumulative carbon budgets corresponding to temperature

targets (England et al., 2009; Gillett et al., 2013), although
its application to real-world carbon budgets is complicated
by the effect of non-CO2 forcers. The “effective TCRE”
(Matthews et al., 2017a) is thus the warming rate per unit
carbon dioxide emitted in a scenario where forcers other than
CO2 are acting on the system (such as aerosols and other
greenhouse gases), which adds some uncertainty to the esti-
mation of carbon budgets (Mengis et al., 2018; Rogelj et al.,
2015a).

Understanding of how the Earth system reaches equilib-
rium in response to climate forcing has advanced in recent
years; a number of studies have highlighted that existing 150-
year simulations are insufficiently long to assess the equilib-
rium climate sensitivity (ECS, the equilibrium response of
surface temperatures to a doubling of carbon dioxide con-
centrations) of general circulation models, and assuming a
single feedback parameter associated with effective climate
sensitivity (Gregory et al., 2004) can lead to a significant un-
derestimation of long-term response (Gregory and Andrews,
2016; Geoffroy et al., 2013; Senior and Mitchell, 2000; Win-
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ton et al., 2010; Armour et al., 2013; Li et al., 2013; Rose
et al., 2014; Andrews et al., 2018).

What is less clear at present is whether these findings have
any relevance for the use of TCRE in emissions policy deci-
sions. The TCRE framework is robust in transient scenarios
in which emissions remain mostly positive (Zickfeld et al.,
2012; Krasting et al., 2014; Herrington and Zickfeld, 2014;
Goodwin et al., 2015), and its value can be to some degree
constrained by emissions and observed temperatures to date
– even in the context of observational uncertainties (Millar
and Friedlingstein, 2018). This path independence has been
explained by the fact that both heat and carbon are absorbed
into the ocean on similar timescales, the former acting to re-
alize warming in response to forcing, while the latter reduces
the forcing itself (Williams et al., 2016).

However, the robustness of temperature-cumulative emis-
sions scaling in Earth system models under large nega-
tive emissions on longer timescales is less well understood
(Boucher et al., 2012; Vichi et al., 2013; Cao and Caldeira,
2010). Although an experimental design to test the long-term
robustness of TCRE under zero or negative emissions (Jones
et al., 2019) has been proposed and would be highly valu-
able, only a small selection of Earth system models have per-
formed this type of experiment to date, finding large uncer-
tainties in land and ocean carbon sinks (Jones et al., 2016)
and in the long-term dynamics of equilibrium response to
forcing (Rugenstein et al., 2019).

Earth system models of intermediate complexity (EMICs)
allow a more computationally tractable integration of long-
timescale changes and in these cases, cumulative emissions–
temperature proportionality has been found to be relatively
insensitive to emissions pathway (Zickfeld and Herring-
ton, 2015; Tokarska and Zickfeld, 2015; Tokarska et al.,
2019a; Zickfeld et al., 2016; Herrington and Zickfeld, 2014;
Tokarska et al., 2019b; MacDougall et al., 2015). How-
ever, many of these results are conditional on the structural
assumptions of a single EMIC: the U.Vic Model (Weaver
et al., 2001). Within this structure, parametric sensitivities for
TCRE itself have been comprehensively tested (MacDougall
et al., 2017) and reversibility in the U.Vic model has been
tested to a degree (Ehlert and Zickfeld, 2018), but uncertain-
ties remain in these results due to structural assumptions and
parametric choices in the U.Vic model.

Simple climate models allow for very fast simulations
which are capable of wide-scale parameter searches, but in
many cases results are still subject to structural assump-
tions. For example, some models contain a fixed climate
feedback parameter (Ricke and Caldeira, 2014; MacDougall
and Friedlingstein, 2015) or a prior constraint on the frac-
tion of equilibrium warming which has already been realized
to date (Millar et al., 2017c). These assumptions have been
called into question by recent advances in the understand-
ing of Earth system response timescales (Rugenstein et al.,
2019). Other models are less structurally constrained but as-
sume prior information on the equilibrium climate sensitivity

of the real world (Goodwin et al., 2018b). The effect of this
set of assumptions on the TCRE framework has not been as-
sessed.

A number of studies have considered the “zero emission
warming commitment” (ZEC), or the warming expected af-
ter emissions cease. This quantity can potentially be posi-
tive or negative in different models (MacDougall et al., 2020;
Ehlert and Zickfeld, 2017; Jones et al., 2019; Frölicher and
Paynter, 2015; Williams et al., 2017) and modifications to
the cumulative emissions/ carbon budgeting framework have
been proposed (Rogelj et al., 2019a; Frölicher and Paynter,
2015) to allow continued post-zero emissions temperature
evolution and unforeseen earth-system feedbacks or “tipping
points” which change biosphere or climate feedbacks (Brook
et al., 2013). A complementary framework proposes a pol-
icy framework focused on net-zero emissions and associated
peak warming (Rogelj et al., 2019b). However, these frame-
works are most useful if the zero emissions commitment is a
small and finite correction to the net carbon budget, which is
only true if peak warming occurs within a small number of
decades of net-zero emissions.

Aside from physical modeling uncertainties in the long-
term stability of the TCRE assumption, indefinite carbon
budgeting in policy making requires the combination of the
effects of near-term emissions reductions (Knutti et al., 2016;
Rogelj et al., 2016a; Eom et al., 2015) and long-term carbon
removal technology which is subject to large socioeconomic,
technological and physical uncertainties (Fuss et al., 2014;
Smith et al., 2016; Larkin et al., 2018).

Similarly, the framing of climate policy in terms of a
net-zero emissions target also combines decarbonization of
infrastructure (of which some sectors are highly difficult;
Bataille et al., 2018) and mid-century negative emissions
capacity. These two components are conceptually different;
the former is at least partly a function of structural choices
which are currently available, while the latter is conditional
on deeply uncertain biophysical (Smith et al., 2016), techno-
logical (Lomax et al., 2015) and social (Anderson and Peters,
2016) factors.

Here, we consider long-term emissions scenarios in a sim-
ple model informed by recent advances in understanding in
the thermal response of the Earth system to climate forcing
on a range of timescales (Armour et al., 2013; Geoffroy et al.,
2013; Winton et al., 2010; Held et al., 2010; Proistosescu and
Huybers, 2017; Rugenstein et al., 2016) and how prior as-
sumptions on model parameters have an impact on the long-
term robustness of a cumulative carbon emissions budget and
the possible commitment to long-term negative emissions to
maintain a stable climate. We discuss the plausibility of hys-
teresis in global mean temperature as a function of cumula-
tive emissions and of peak warming occurring significantly
after net-zero emissions have been achieved.

Finally, we propose that a policy approach which relies
primarily on indefinite carbon budgets is not useful in the
light of large geophysical and socioeconomic uncertainties,
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and that more robust decisions can be made if near-term mit-
igation priorities are decided independently of absolute com-
mitments on long-term negative emissions capacity, which
can be revised later (Rogelj et al., 2019b). Furthermore, we
show that global temperature evolution on the timescale of
the mid-21st century would enable a better constraint on fu-
ture negative emissions requirements for temperature stabi-
lization.

2 Methods

2.1 Model description

We first consider to what degree historical observations can
constrain the long-term coupled carbon–climate evolution of
the Earth system. In order to produce a posterior parameter
distribution conditioned on observations (and thus uncertain-
ties in system response), there are various strategies (Emerick
and Reynolds, 2012).

Our approach here is to employ Bayesian calibration: a
Markov chain Monte Carlo (MCMC) optimization (Good-
man and Weare, 2010) in which a posterior parameter distri-
bution is iteratively calculated such that the sample density is
representative of an underlying likelihood function. This ap-
proach is generally regarded as an accurate approach, but the
number of model iterations required is often too computa-
tionally demanding to be practical (Oliver and Chen, 2011).

Computationally efficient alternatives include “history
matching” approaches which rule out members of a random
sample which are not consistent with observations (Goodwin
et al., 2018b; Williamson et al., 2013), an approach which
can approximate the posterior in a computationally efficient
manner subject to careful treatment of stochastic errors and
prior assumptions (Liu and Oliver, 2003). However, in the
present study, the use of MCMC is made feasible through the
use of a fast two-timescale thermal response model (compa-
rable to those used in Proistosescu and Huybers, 2017; Ge-
offroy et al., 2013; Smith et al., 2018; Millar et al., 2017c).

The thermal model in FAIR represents temperatures as a
combination of two components with fast and slow inherent
timescales:

dTn
dt
=
qnF − Tn

dn
;T =

∑
n

Tn;n= 1,2, (1)

where Tn is global mean temperature for each timescale n. Tn
is the component of warming associated with that timescale,
qn is the feedback parameter and dn is the response timescale.
We consider the heat flux into the shallow and deep ocean to
be functions of the same timescale:

Rn = rn(F − Tn/qn);R =
∑
n

Rn;
∑
n

rn = 1;n= 1,2, (2)

where rn is an efficacy factor for heat absorbed by the deep
(n= 1) or shallow (n= 2) ocean, which sum to unity given
the boundary condition that R(0)= F (0)= F4×CO2 at t = 0

(allowing just 1 degree of freedom r1 – the fraction of heat
which is allocated to deep-ocean storage).

The thermal model is made sufficiently fast for MCMC
calibration using the particular solution to the step change in
forcing, which can be convoluted with a generic forcing time
series to provide a general solution (Ruelle, 1998; Ragone
et al., 2016; Lucarini et al., 2017). The particular solutions
for temperature and radiation response to a step change in
forcing F4×CO2 at time t = 0 can be expressed as a sum of
exponential decay functions:

Tp(t)= F4×CO2

2∑
n=1

qn(1− exp(−t/dn)), (3)

Rp(t)= F4×CO2

2∑
n=1

rn(exp(−t/dn)), (4)

where TP (t) is the annual global mean temperature andRp(t)
is the net top-of-atmosphere radiative imbalance at time t ,
and F4×CO2 is the instantaneous global mean radiative forc-
ing associated with a quadrupling of CO2, taken here to be
3.7 Wm−2 (Myhre et al., 2013).

The thermal model is coupled to an emissions-driven pulse
model (in which each unit of emitted carbon dioxide is allo-
cated to one of four pools with its own representative decay
time). The carbon scheme has four atmospheric carbon pools
Ri (where i = 0.3, following Myhre et al., 2013) with dissi-
pation timescales τi as detailed in Table 1. Each unit pulse of
emissions is allocated to each of the four pools with a frac-
tion ai :

dRi
dt
= aiE(t)−

Ri

τi
, (5)

for which the solution for a unit emissions pulse δ(t) can be
written

Ri(t)= ai(1− e−t/τi ). (6)

A generic emissions time seriesE(t) can then be expressed
as a sum of discrete pulses, allowing the corresponding car-
bon pools Ci(t) to be expressed as a sum of pulse responses
Ri(t):

Ci(t)=

t∫
0

dE(t ′)
dt

Ri(t − t ′)dt ′. (7)

Atmospheric CO2 concentrations C are calculated as the
sum of the four poolsC(t)= C0+

∑
iCi(t) and are converted

into a radiative forcing estimate assuming the standard loga-
rithmic relationship:

F (t)=
F4×CO2

ln(4)
ln
(
C(t)
C0

)
+ frFaer+Fother, (8)

where fr is a free parameter to allow the scaling of aerosol
forcing (conceptually allowing for forcing uncertainty in
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the historical time series) and FotherAnt is all other anthro-
pogenic and natural forcers (summed from Meinshausen
et al., 2011b). The thermal response is calculated by express-
ing the numerical time derivative of the forcing time series
F (t) where the change in forcing in a given time step in a
given year1F (t ′) is [F (t ′)−F (t ′−1)]. The forcing time se-
ries can thus be expressed a series of step functions, and Tp
from Eq. (3) can be used to calculate the integrated thermal
response.

T (t)=
t∑

t ′=0

1F (t ′)
2∑
n=1

qn

(
1− exp

(
−(t − t ′)
dn

))
(9)

Heat fluxes into the deep (D(t)) and shallow (H (t)) ocean
components are represented by numerical integration of the
slow (n= 1) and fast (n= 2) pulse response components of
Rp(t) in Eq. (4):

D(t)= r1
t∑

t ′=0

1F (t ′)exp
(
−(t − t ′)
d1

)
, (10)

H (t)= (1− r1)
t∑

t ′=0

1F (t ′)exp
(
−(t − t ′)
d2

)
. (11)

This is again performed in a computationally efficient
manner using MATLAB’s “filter” function.

2.1.1 Model optimization

We then assess the degree to which the physical parameters
of this simple model (detailed in Table 1) can be constrained
by historical transient information. The Earth system config-
uration of the pulse model has time series input emissions of
CO2, along with radiative estimates from Meinshausen et al.
(2011b) of non-CO2 forcing agents. We optimize the thermal
model parameters for two timescales, the carbon dissipation
parameters for four pools and the non-CO2 forcing factor fr.

Optimization is conducted with the Goodman and Weare
(2010) MCMC implementation, using flat initial parameter
distributions as shown in Table 1, 200 walkers and 50 000
iterations for each optimization. Cost functions are com-
puted for global mean temperature (T ), global CO2 concen-
trations (C), shallow-ocean heat content (H ) and deep-ocean
heat content (D):

ET =
∑
t

(
(T (t)− TGCM(t))

√
2σT

)2

EC,

=

∑
t

(
(C(t)−CGCM(t))

√
2σC

)2

EH ,

=

∑
t

(
(H (t)−HGCM(t))

√
2σH

)2

ED,

=

∑
t

(
(D(t)−DGCM(t))

√
2σD

)2

, (12)

where σT represents the confidence in observed tempera-
ture values. To estimate this value, we use 2000–2019 an-
nual global mean temperature anomalies from 1850 to 1900
in the HadCRUT-CW 100 member observational ensemble,
where σT is the standard deviation of 2000 point (20 years,
and 100 ensemble members), which represents uncertainty
due to both natural variability and observational processing
uncertainties (Cowtan and Way, 2013; Cowtan et al., 2015).

For σC , we lack an unforced standard deviation estimate,
so a normalization constant of σC = 0.3 ppm was chosen em-
pirically to produce a ±1 ppmv range in 2016 observed con-
centrations in the posterior distribution (though uncertainties
in emissions are much larger, and represented with the emis-
sions scaling parameter se).

Shallow- and deep-ocean heat uptake (in cases where they
are used) is taken as the 0–300 and 300 m+ heat content re-
spectively in Zanna et al. (2019), with σH and σD taken as
1850–1950 standard deviations from the same dataset. Con-
fidence estimates in these time series are not available, so σH
and σD nominally represents uncertainty due to natural vari-
ability; so “C, T , heat” results should be considered to be
an idealized estimate of how ocean heat information could
constrain models if we were confident in that information.

In the “C, T constraint” case, optimization is conducted
using −ET and −EC as log likelihoods in the MCMC op-
timizer, with parameter boundaries as listed in Table 1. The
“C, T , heat constraint” case uses the sum of −ET , −EC ,
ED and −EH cost functions. The “C, T , paleo” case is im-
plemented using the likely value and upper bound on Earth
system sensitivity from Goodman and Weare (2010) as the
median and 90th percentile of a gamma distribution for equi-
librium climate sensitivity. The “C, T , RWF” constraint is
implemented using a log-normal prior on transient climate
response with 5–95 percentiles of 1.0–2.5 K as in Millar et al.
(2017c) and a Gaussian prior on RWF (realized warming
fraction, the ratio between ECS and TCR, transient climate
response) with a mean of 0.6 and 5th and 9th percentiles of
0.45 and 0.75. The emissions scaling parameter is subject to
Gaussian prior, which was adjusted such that uncertainty in
5 %–95 % cumulative CO2 emissions in 2016 reflects obser-
vational uncertainties. It was found empirically that a Gaus-
sian prior with a mean scaling parameter of 1, and standard
deviations of 0.1 well represented published uncertainties,
largely attributable to uncertain land use emissions (Le Quéré
et al., 2018; Millar and Friedlingstein, 2018) (see Supple-
ment Fig. S3).

3 Results

3.1 The impact of prior assumptions on carbon
dynamics

We consider a number of different constraint assumptions on
model parameters and how they influence the range of future
projections under different scenarios (Fig. 1). If the model
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Table 1. A table showing default model parameter values and minimum and maximum values used in model optimization. a a3 is calculated
as the 1−

∑
i=1:3(ai ). b Following Millar et al. (2017c), deep-ocean carbon uptake timescale is not included in the optimization (the

timescale is effectively infinite: sufficiently longer than the scenarios considered here for the a3 pool to not absorb significant carbon). NA:
not available.

Long name Symbol Default Min Max

Geological re-absorption fraction a0 0.26 0.1 0.3
Deep-ocean invasion/equilibration fraction a1 0.14 0.1 0.3
Biospheric uptake/ocean thermocline invasion fraction a2 0.22 0.1 0.3
Rapid biospheric uptake/ocean thermocline invasion fractiona a3 NA NA NA
Geological re-absorption timescale (years)b τ0 106 106 106

Deep-ocean invasion/equilibration timescale (years) τ1 200 200 1000
Biospheric uptake/ocean thermocline invasion timescale (years) τ2 40 40 100
Rapid biospheric uptake/ocean mixed-layer invasion timescale (years) τ3 1 1 10
Deep-ocean sensitivity (KWm−2) q1 0 0 10a

Upper-ocean sensitivity (KWm−2) q2 0 0 10
Deep-ocean timescale (years) d1 239 80 3000
Upper-ocean timescale (years) d2 30 1 40
Fraction of forcing in deep-ocean response r1 0 0.33 0.5
Fraction of forcing in upper-ocean response r2 0 0.33 0.5
Non-CO2 forcing ratio fr 0.7 1 1.3
Emissions scaling ratio se 0.8 1 1.2

parameters are conditioned only on historical emissions and
temperature (Fig. 1a, b), transient warming under continued
positive emissions is well constrained, such that temperatures
follow the TCRE relationship under high-emission scenario
(RCP8.5, Riahi et al., 2011) emissions. However, the rela-
tionship is not robust under long-term negative emissions
in a decarbonization scenario (RCP2.6, Van Vuuren et al.,
2011) where some model variants in the posterior parameter
distribution allow hysteresis in which temperatures continue
to rise over the following centuries under a regime of net-
negative emissions.

Adding information on historical deep- and shallow-ocean
heat content (Zanna et al., 2019) does not significantly con-
strain the system (Fig. 1a, c). However, information about
long-term equilibrium climate sensitivity from paleo-climate
data (Royer et al., 2011; Goodwin et al., 2018b) does provide
a constraint on the degree of possible hysteresis (Fig. 1d)
as does the assumption of a known RWF (the fraction of
present-day warming relative to equilibrium warming asso-
ciated with current forcing), which is a very strong con-
straint on TCRE-like behavior. This prior, used in Millar
et al. (2017b), produces a model configuration in which
a proportional relationship between cumulative emissions–
temperature is robust during both positive and negative
phases of the emissions scenario (Fig. 1e).

This raises the question of the degree to which we are
confident in our knowledge of the values of ECS and RWF.
In Millar et al. (2017b), the RWF prior is derived from the
observation that the TCR (the warming at the time of CO2
doubling in a transient simulation where CO2 increases by
1 % yr−1) and effective climate sensitivity (EffCS) are corre-

lated in the CMIP5 ensemble (Millar et al., 2015) (where Ef-
fCS is the estimation of equilibrium response through the lin-
ear extrapolation of temperature change as a function of net
top-of-atmosphere radiative imbalance in an instantaneous
CO2 quadrupling experiment; Gregory et al., 2004).

However, the ECS, realized over a multi-century to mil-
lennial timescale, is often significantly greater than the effec-
tive climate sensitivity (Rugenstein et al., 2016; Knutti et al.,
2017), and its value may not be well constrained by observed
warming (Proistosescu and Huybers, 2017; Andrews et al.,
2018). As such, it is not apparent that the long-term ECS
in a model like Myhre et al. (2013) can be constrained by
TCR (with large implications for millennial-scale tempera-
ture evolution, as seen in Fig. S16).

These prior assumptions strongly impact the range of pos-
sible behavior under strong negative emissions in RCP2.6.
However, under RCP8.5, the ensembles constrained by his-
torical temperatures show a near-linear relationship between
cumulative emissions and temperature, irrespective of prior
assumptions and constraints used (Fig. 1b–e, red lines); this
can be broadly understood by considering that in RCP8.5, ra-
diative forcing continues to increase at current rates and thus
long-term warming is broadly a function of TCR, which is
itself constrained by historical temperature evolution.

The scenarios considered here are multi-gas, with both
CO2 emissions and non-CO2 forcers. As expected (Mengis
et al., 2018), non-CO2 forcing assumptions can alter the
effective TCRE seen in transient RCP8.5 simulations and
RCP2.6 projections on shorter timescales of less than a cen-
tury (see Fig. S4); however, the potential for hysteresis on
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Figure 1. Posterior distributions of future global mean temperature projections constrained by 1850–2016 historical temperatures in a range
of scenarios, priors and structural choices as a function of (a) time and (b–e) cumulative emissions of carbon (with 1000 years of climate
evolution plotted from 1851 to 2850). Colored lines represent RCP8.5 (red) and RCP2.6 (blue). Panel (b) and dashed lines in (a) show
two-timescale model posterior constrained using emissions (C) and temperature (T ) only; (c) and solid lines in (a) are constrained using C,
T and ocean heat content (H ); (d) and dot–dash lines in (a) use C, T and RWF. Panel (e) and dotted lines use constraints on C, T and a
paleoclimate prior on ECS. Shaded regions indicate the 10–90th percentile range. Solid black lines show observed global mean temperature
median estimate (Cowtan and Way, 2013) and most likely estimates of combined land use and fossil fuel emissions (Le Quéré et al., 2018).
Grey lines show uncertainties in observed temperature–cumulative-emissions following Millar and Friedlingstein (2018).

longer timescales is similar in multi-gas and CO2 only ex-
periments.

3.2 Implications for meeting Paris temperature targets

If we consider a “high-risk” world where ECS (and its re-
lationship to TCR) is not independently constrained, corre-
sponding to Fig. 1b, the cumulative emissions framework
is not guaranteed to hold under negative emissions, and the
concept of an indefinite cumulative carbon budget associated
with a temperature target may not be helpful for near-term

carbon mitigation planning (results for other prior assump-
tions are shown in the Supplement).

We illustrate this in some idealized cases, using adaptive
scenarios in which emissions are adjusted in order to achieve
1.5 and 2 ◦C climates post-2100 (similar to those considered
in Sanderson et al., 2016, 2017; Goodwin et al., 2018a). The
Sanderson et al. (2016) approach allows iteration of scenar-
ios such that targets can be met in almost all cases, but the
optimization is “forward looking” (in contrast to Goodwin
et al., 2018a, which simulates decisions made in response to
observed warming to date without perfect knowledge of the
future). Here, we follow a similar strategy to Sanderson et al.
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(2016), where scenarios are designed using a small number
of parameters which are then optimized to meet a stabiliza-
tion target post-2100.

Scenarios are conducted in three phases: before 2020 is the
“historical” period, where emissions follow RCP2.6 (which
is broadly consistent with observations before 2020). Be-
tween 2020 and 2040, the “uninformed” period, CO2 emis-
sions follow one of a range of linear mitigation pathways
such that 2040 CO2 emissions are chosen at random for each
scenario, ranging from 0 to 10 GtC yr−1 (our focus here is
on low-emission futures, and we do not consider here futures
where emissions increase post-2020).

Each ensemble member uses a single parameter set drawn
from the posterior distribution of models calculated dur-
ing the MCMC constraint of model parameter space in
Sect. 2.1.1. Emissions follow RCP2.6 from 1850 until 2020,
after which CO2 emissions are by a “pchip” spline which
is fixed at a number of points, the first of which are 2010
and 2020 RCP2.6 emissions – ensuring a smooth transi-
tion from the RCP time series to the post-2020 time series.
An uninformed emissions trajectory takes place from 2020
to 2040, where emissions evolve from RCP2.6 2020 lev-
els (10.26 GtC yr−1) to a 2040 emissions level drawn ran-
domly from a uniform distribution with bounds at 0 and
10 GtC yr−1.

Post-2040, in the “adaptive” period, an emission sce-
nario is calculated iteratively to achieve temperature stabi-
lization at a defined target post-2100, allowing for a tem-
perature overshoot before 2100 with a large but finite lower
limit on net-negative emissions capacity in line with the
largest negative emissions values seen in the integrated as-
sessment literature for 1.5◦ temperature stabilization targets
(−20 GtC yr−1, IPCC, 2018). Non-CO2 gas emissions follow
RCP2.6 throughout the simulation in all cases (clearly, these
scenarios should not be treated as socioeconomically plau-
sible scenarios but rather as idealized illustrations of Earth
system response to a range of forcing pathways).

Parametric control of the adaptive phase is achieved by
specifying three time points (the first, tp1, in the range 2060–
2100; the second, tp2, in the range 2101–2300; and the third,
tp3, fixed at the end of the simulation in 2764). Each time
point is associated with an emissions rate which is each
weakly constrained to lie in the range −40 to +10 GtC yr−1.
Optimization uses MATLAB’s fmincon algorithm to find op-
timal values of tp1,2 and Ep1,2,3, where the model is run it-
eratively for a given physical parameter set to find a solution
which minimizes the RMSE from the desired annual mean
global mean temperature time series target (1.5 or 2.0 ◦C, in
this case) over the date range 2100–2500.

The temperature trajectories are illustrated in Fig. 2a. Each
member of the posterior distribution of possible simple cli-
mate models in Fig. 1a, b is then paired with a random
2020–2050 emissions reduction pathway, and then a post-
2050 emissions pathway is calculated to optimize for stabi-
lization at 1.5 or 2◦ post-2100. This framework allows us to

consider what would be required for long-term stabilization
in a model configuration where the cumulative emissions–
temperature relationship does not necessarily hold.

The resulting scenarios are idealized, some requiring a
very rapid switch to large net-negative values after 2040
in order to stabilize temperatures at 1.5 ◦C (Fig. 2b), and
such rapid decarbonization may not be achievable in real-
ity (Sanderson et al., 2016), but we can learn some useful
properties of the system response by studying the relation-
ships between near-term and long-term emissions commit-
ments. Non-CO2 emissions remain at RCP2.6 levels in all
cases (though the non-CO2 forcing varies as a function of
the fr parameter).

The range of long-term emission trajectories for tempera-
ture stabilization is diverse (Fig. 2c), in some cases requiring
large negative emissions in the latter half of the 21st cen-
tury to achieve temperature stabilization after 2100 (Fig. 2a).
The cumulative carbon budget plume allows for a 1.5 ◦C
(2.0 ◦C) post-2010 budget of−300 to 400 GtC (0 to 900 GtC)
by 2100, a budget which continues to grow more uncertain
over the centuries which follow (Fig. 2c, d). Most of the
1.5 ◦C simulations overshoot the target in the latter half of
the 21st century (Fig. 2a), and the post-2010 budget for ini-
tial exceedance of 1.5 ◦C is more tightly constrained at 250–
400 GtC (most 2 ◦C simulations do not significantly over-
shoot).

This large uncertainty in the face of long-term stabilization
scenarios draws into question the utility of an indefinite car-
bon budget (in the case where we have no prior information
on equilibrium response). We can consider to what degree
we can constrain future response using a definite budget with
a 2020–2050 timeframe (Fig. 3). Firstly, even in the face of
possible hysteresis of temperature as a function of cumula-
tive carbon emissions, there is a linear relationship between
2020 and 2040 budgets and associated late-century carbon
removal rates required for stabilization (Fig. 3a).

For example, if a late-century net carbon emission of
−2.9 GtC yr−1 is assumed for the late century (correspond-
ing to the central estimate of 1.5◦, low-overshoot stabiliza-
tion from the IPCC Special Report on 1.5 ◦C warming; IPCC,
2018), a 50 % chance of 1.5◦ requires a 2020–2040 budget of
150 GtC, which would require a 60 % cut in emissions from
present-day levels by 2040. A 75 % chance of meeting the
target would require a 2020–2040 budget of 100 GtC, requir-
ing just over 100 % cut in carbon emissions by 2040.

Here again, the choice of prior constraint on model
parameters has an important effect. If the paleoclimate
or RWF is used, a 75 % chance of 1.5◦ given an as-
sumed −2.9 GtC yr−1 late-century removal rate would al-
low a 160 GtC (or 220 GtC) budget from 2020 to 2040 (see
Fig. S14c, d). Similarly, estimated carbon budgets become
more consistent with TCRE-derived estimates if an RWF
prior is used, with 2100 budgets of 120–430 GtC (500–
900GtC) for 1.5 ◦C (2.0 ◦C). This can be compared with the
IPCC SR1.5 assessment of 115–230 GtC (320–550 GtC) re-
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Figure 2. Plots showing idealized pathways to 1.5 or 2.0 ◦C temperature stabilization for an ensemble of coupled carbon–climate model
configurations. Panel (a) shows the global mean temperature as a function of time for 1.5 and 2.0 ◦C stabilization ensembles; (b) shows
emissions in the historical, uniformed and adaptive stages of the simulation; (c) shows the global mean temperatures above 2006–2016
(left/right axis) levels as a function of post-2010 cumulative CO2 emissions, while (d) shows the cumulative carbon emissions total for
ensemble members as a function of time. Shaded regions in (a, b, d) indicate 10th–90th percentile range of the ensemble distribution, while
dotted lines shown the 50th percentile. Gray/blue/black areas refer to uninformed/adaptive for 2.0 ◦C/adaptive for 1.5 ◦C respectively. Box–
whisker plots in (c) show the long-term cumulative carbon budget assessed in 2100 for 1.5 and 2.0 ◦C stabilization from 1850 to 2500.
Box–whisker plots in (d) show the TCRE estimate of carbon budget with (median shown by “+”) and without (median shown by “x”)
non-CO2 gas correction. Red circle shows ensemble mean warming and post-2010 cumulative emissions in 2020.

spectively, which includes uncertainties in non-CO2 emis-
sions and forcings and long-timescale carbon cycle feed-
backs.

These findings support the framing of emissions policy in
terms of near-term emissions reductions rather than indefi-
nite carbon budgets (Rogelj et al., 2019b). By the mid-21st
century, observed warming will provide a good indication of
the degree of negative emissions required for stabilization –
as the average realized warming in 2040–2060 provides quite
a strong constraint on budgets for the latter half of the cen-
tury (Fig. 3b). The degree of possible mid-century warming
can be reduced by minimizing the 2020–2040 carbon budget,
but there still exists uncertainty due to the degree of thermal
inertia in the system as greenhouse gas concentrations stabi-
lize.

The strong relationship between mid-century warming and
late-century carbon removal requirements for 1.5 or 2.0 ◦C
stabilization occurs because 2040–2060 warming can be po-
tentially decreased either by fortuity (with a small value of
real-world equilibrium climate sensitivity) or by action (by
minimizing near-term emissions), both of which reduce late-
century net carbon removal requirements. Conversely, high
climate sensitivity or slow decarbonization would both re-
sult in greater mid-century warming and greater necessity for
negative emissions deployment.

4 Discussion

Recent climate policy discussions have been framed in the
context of a carbon budget, an allowable net total of cumu-
lative emissions which are consistent with a desired limit on
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Figure 3. Plots showing (a) the relationship between mid-century
cumulative carbon budgets and (b) mid-century warming and as-
sociated likelihoods of long-term carbon removal requirements for
temperature stabilization. Panel (a) shows the ensemble relation-
ship between the net carbon emitted between 2020 and 2040 (un-
informed period in Fig. 1) and the associated range of possible car-
bon removal required later in the century in the adaptive phase for
1.5 ◦C (green) and 2.0 ◦C (blue) stabilization. Filled circles repre-
sent an individual ensemble member, while shaded blue/green areas
represent a moving estimate of the 10–90th percentile range of the
2.0 ◦C/1.5 ◦C distribution (solid blue/green lines are 2.0 ◦C/1.5 ◦C
median). Panel (b) shows 2050–2100 allowable carbon budget as
a function of 2050 warming above pre-industrial levels. Dots and
shading show ensemble distribution as in (a). Horizontal box–
whisker plots show 10th, 25th, 50th, 75th and 90th percentiles of
2050 warming consistent with labeled 2020–2040 carbon budgets
and the associated percentage reduction in 2040 emissions relative
to 2020. Gray bar shows the range of reference 2100 net carbon
budgets considered for end-of-century 1.5◦ overshoot scenarios in
the IPCC spacial report on 1.5◦ (IPCC, 2018).

planetary warming (Allen et al., 2009; Millar et al., 2016).
Nuances in the estimation of this budget have been noted
relating to bias correction of existing models (Millar et al.,
2017a), the compensation for the effects of non-CO2 anthro-
pogenic emissions (Rogelj et al., 2015a; MacDougall et al.,
2015; Mengis et al., 2018) and the need for additional carbon
fluxes for temperature stabilization after net-zero emissions
have been achieved (Rogelj et al., 2016b; Jones et al., 2019;
Mengis et al., 2018). These factors are deemed to be correc-
tions to the TCRE-computed carbon budgets (Rogelj et al.,
2019a), and values of TCRE informed by a combination of
model response historical records of global surface temper-
atures (Gillett et al., 2013; Steinacher and Joos, 2016) form
the basis for published model estimates on carbon budgets
for temperature stabilization (Matthews et al., 2017a, a).

It has been noted before that at any given time, the TCRE
can be expressed as a product of three components: the de-
pendence of surface warming on radiative forcing, the frac-
tional dependence of radiative forcing on atmospheric CO2
and the dependence of atmospheric CO2 on carbon emissions
(Goodwin et al., 2015) – but each of these elements can po-
tentially evolve in time as feedbacks are realized on differ-
ent timescales (Rogelj et al., 2019a; Goodwin et al., 2018a).
This has been addressed by introducing “threshold avoidance
budgets” and “threshold exceedance budgets” (Rogelj et al.,
2016b), which differ due to the lag of peak temperatures after
net-zero emissions have been achieved as slower timescale
components of the system equilibrate or due the effects of
non-CO2 forcers. But the scale of these effects is generally
assumed to be small – on the order of 1–2 decades (Ricke
and Caldeira, 2014; Zickfeld and Herrington, 2015). Ideal-
ized experiments to assess zero-emission warming commit-
ment (MacDougall et al., 2020) in both EMICs and ESMs
suggest the ZEC is small on a 50-year timescale but uncertain
on a century timescale, with a large diversity of magnitude,
sign and rate of warming post-cessation of emissions.

It has also been demonstrated that effective climate sen-
sitivity likely evolves in time (Goodwin, 2018; Rohling
et al., 2018), which will influence TCRE (Goodwin et al.,
2015) and thus carbon budgets for a given temperature tar-
get (Goodwin et al., 2018b); thus attempts to quantify fixed
real-world estimates for TCRE or effective climate sensitiv-
ity must be qualified for long timescales (Rugenstein et al.,
2019) or extended net-negative emissions (Ehlert and Zick-
feld, 2018). In this study, the pulse response formulation al-
lows for the idealized separation of process response both in
the evolution of atmospheric CO2 in response to emissions
and in the thermal response of the system to forcing, allowing
an illustration of how prior assumptions impact feedbacks
on different timescales. Future work should consider further
how these fixed parameters of the carbon–climate system
can be further independently constrained and integrated with
the existing understanding of time-evolving net climate feed-
backs.
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We find that the pulse response model is not constrained to
follow TCRE-like behavior without prior knowledge of equi-
librium climate sensitivity. Considering other simple models,
such priors are often used (either explicitly or implicitly).
The parameters of the FAIR (Millar et al., 2017c; Smith et al.,
2018) simple climate model, for example, are constrained us-
ing a prior on RWF (whereas projected uncertainty ranges us-
ing other models such as Goodwin et al., 2018b use no such
prior). The constraint in FAIR is justified with an observed
relationship between effective climate sensitivity and TCR in
CMIP (Coupled Model Intercomparison Project) models and
is thus likely overly constraining on possible model behav-
ior consistent with state-of-the-art general circulation models
(GCMs; see Supplement Sect. S1).

Other models do not explicitly constrain RWF but do
constrain equilibrium climate sensitivity. The WASP model
(Goodwin et al., 2015; Goodwin, 2016) considers multi-
ple timescales of response and a geological prior on equi-
librium warming response to emissions, which acts to pre-
clude the possibility of strong hysteresis in the temperature
response to cumulative emissions. Another simple model,
HECTOR (Hartin et al., 2015), has a thermal component with
a fixed climate feedback (an explicitly defined parameter in
the model). Thus, irrespective of how the parameters are con-
strained, the model has a strong structural constraint which
prevents the separation of the slow and fast response of the
Earth system, which in practice would constrain the model’s
ZEC to small values and limit the potential for hysteresis.

In another common simple model, MAGICC (Mein-
shausen et al., 2011a), non-stationary feedbacks are repre-
sented in two ways – using an allowance for an oceanic sur-
face and land surface feedback strengths, as well as having
forcing-dependent feedback strengths. However, ECS values
calculated using MAGICC when calibrated as an emulator
of CMIP GCM simulations remain very close to the effec-
tive climate sensitivities of the target model (Meinshausen
et al., 2011a), even though in some cases we know that the
true ECS realized in millennial time frames is significantly
greater than the EffCS value (Rugenstein et al., 2019). This
requires further research but is possibly explained by the con-
sensus that multiple feedback timescales arise from warming
patterns associated with shallow- and deep-ocean warming
(Li et al., 2013; Geoffroy et al., 2013). Representing feed-
backs as a function of the warming of the ocean surface
warming is therefore a strong structural assumption which
may not capture this effect.

Recent work has made clear that the long-timescale re-
sponse of the Earth system is not well constrained by past ob-
servations (Proistosescu and Huybers, 2017; Andrews et al.,
2018), drawing into question whether recent transient warm-
ing is able to constrain equilibrium climate sensitivity (Otto
et al., 2013) or the realized warming fraction (Millar et al.,
2015). In the absence of these constraints, we cannot rule out
without additional data that the slow timescale response of
the Earth system associated with deep-ocean warming may

lead to a world which exhibits a (relatively) low TCR but a
high ECS realized over centuries or millennia (Rugenstein
et al., 2019) which, as we show here, may complicate the use
of an indefinite carbon budget for temperature targets.

Here, we find that these factors result in large uncertain-
ties on remaining carbon budgets until 2100, with the pos-
sibility of hysteresis unless prior information is assumed on
the value of ECS or RWF (Fig. S10). Using an RWF prior,
carbon budgets for 1.5 and 2 ◦C are broadly consistent with
TCRE-derived estimates in Rogelj et al. (2018), but remov-
ing this prior reduces the lower bound of the budget from
positive 120 GtC with a RWF prior (as assessed in 2100 for
1.5 ◦C stabilization) to negative 300 GtC if the prior is re-
moved. These factors are in addition to existing uncertainties
arising from non-CO2 forcing and scenario assumptions (ap-
proximately ±200 GtC in long-term budgets) and uncertain-
ties in pre-industrial temperatures (approximately ±100 GtC
in long-term budgets) (Rogelj et al., 2018).

Other sources of information exist which may yet resolve
the uncertainty. Independent information to constrain ECS
from paleoclimate (Royer et al., 2011) or process understand-
ing (Sherwood et al., 2014; Zhai et al., 2015; Tian, 2015; Tan
et al., 2016; Cox et al., 2018) may help constrain the potential
for temperature hysteresis. But many constraints to date have
considered only effective climate sensitivity (Gregory et al.,
2004), whereas it is increasingly clear that both the timescale
and amplitude of climate feedbacks need to be constrained in
order to understand the Earth system response to future forc-
ing pathways (Armour et al., 2013). Such avenues could and
should be explored further.

The pulse response model of the type used here is also
a simplification of global response, albeit a commonly used
one (Joos et al., 2013), which resolves the degrees of free-
dom in the range of responses exhibited in physical Earth
system models. The anthropogenically forced warming in
2040–2060 would be subject to internal variability of the or-
der of 0.1 ◦C (Dai et al., 2015; Rogelj et al., 2017; Kay et al.,
2015) which could potentially be improved with detection
approaches (Haustein et al., 2017). As such, observed mid-
century warming would be of some value in constraining
negative emissions requirements later in the century, which
spans nearly 0.6 ◦C over the ensemble range (Fig. 3b).

Clearly, the models used here are idealizations. Emission
rates and rates of change are not constrained by technologi-
cal or societal limitations, and only CO2 pathways are mod-
ified from the RCP2.6 scenario, and so results are only il-
lustrative of how the Earth system might respond to differ-
ent hypothetical pathways. Finding pathways for technology
and a policy which can actually achieve these pathways is
a question for integrated assessment models. However, the
present standard approach of producing scenarios through
forward-looking solvers (O’Neill et al., 2016) is unable to
capture the risk highlighted here associated with actors who
act today with imperfect knowledge about future technology
(Fuss et al., 2014; Anderson and Peters, 2016) and Earth sys-
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tem response. This has led to a call to frame policy in terms
of near-term emissions which are compatible with projected
peak levels of warming (Rogelj et al., 2019b).

The results of this study support this logic. Even in the
presence of large uncertainty on long-term response to emis-
sions, near-term climate policy can be well posed through
the use of a time-limited net carbon budget or, equivalently,
a near-term commitment for a percentage reduction in emis-
sions by a certain date (Sachs et al., 2016; Oshiro et al.,
2018). Observed warming over the coming decades will pro-
vide additional information on our commitments to imple-
ment negative emissions infrastructure for temperature sta-
bilization – commitments which may or may not prove fea-
sible to realize. But a near-term budget would provide deci-
sion makers with the tools to assess the risk of failure to meet
temperature targets as a function of clearly defined targets for
near-term decarbonization.
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