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Abstract. The variations in oceanic and atmospheric modes on various timescales play important roles in gen-
erating global and regional climate variability. Many efforts have been devoted to identifying the relationships
between the variations in climate modes and regional climate variability, but these have rarely explored the
interconnections among these climate modes. Here we use climate indices to represent the variations in major
climate modes and examine the harmonic relationship among the driving forces of climate modes using slow
feature analysis (SFA) and wavelet analysis. We find that all of the significant peak periods of driving-force
signals in the climate indices can be represented as harmonics of four base periods: 2.32, 3.90, 6.55, and
11.02 years. We infer that the period of 2.32 years is associated with the signal of the quasi-biennial oscillation
(QBO). The periods of 3.90 and 6.55 years are linked to the intrinsic variability of the El Niño–Southern
Oscillation (ENSO), and the period of 11.02 years arises from the sunspot cycle. Results suggest that the base
periods and their harmonic oscillations related to QBO, ENSO, and solar activities act as key connections among
the climatic modes with synchronous behaviors, highlighting the important roles of these three oscillations in
the variability of the Earth’s climate.

Highlights.

i. The harmonic relationship among the driving forces of climate modes was investigated by using slow feature
analysis and wavelet analysis.

ii. All of the significant peak periods of driving-force signals in climate indices can be represented as the
harmonics of four base periods.

iii. The four base periods related to QBO, ENSO, and solar activities act as the key linkages among different
climatic modes with synchronous behaviors.
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1 Introduction

The influences of large-scale climate modes (e.g., El Niño–
Southern Oscillation (ENSO), Pacific Decadal Oscillation
(PDO), North Atlantic Oscillation (NAO), and the At-
lantic Multidecadal Oscillation – AMO) on the variations
of global to regional climate (e.g., temperature, rainfall, and
atmospheric circulations) have been extensively examined
(Bradley et al., 1987; Wu et al., 2003; McCabe et al., 2004;
Kenyon and Hegerl, 2008; Steinman et al., 2015; Wang et
al., 2016, 2017; Yang et al., 2016; R. Zhang et al., 2017;
Xie et al., 2019). It has been well established that regional
climate variations at various temporal and spatial scales are
modulated by the variabilities of major climate modes. For
instance, Wu et al. (2003) estimated that about 25 % of rain-
fall variance in fall and winter over southern China can be
explained by ENSO. McCabe et al. (2004) reported that the
PDO and AMO have contributed to more than half (52 %) of
the spatiotemporal variance in multidecadal drought occur-
rence over the conterminous United States. Xie et al. (2019)
found that the multidecadal variability in East Asian sur-
face air temperature (EASAT) is highly associated with the
NAO, which leads detrended annual EASAT by 15–20 years.
Based on this relationship, they proposed an NAO-based lin-
ear model to predict the near-future change in EASAT.

The variations of oceanic and atmospheric modes affect re-
gional climate mainly through the teleconnections within the
atmosphere (i.e., atmospheric bridge) and ocean (i.e., oceanic
tunnel) (Liu and Alexander, 2007). Atmospheric telecon-
nections can be produced by both external forcings from
ocean or land (e.g., sea surface temperature (SST) anoma-
lies related to ENSO) and internal atmospheric processes
(e.g., Rossby wave in the westerlies) (Trenberth et al., 1998).
Though many theories have been developed to explain the
physical mechanisms behind the influences of major climate
modes on regional climate, the interconnections among these
climate modes per se and their primary driving factors re-
main largely unclear. Given that remote teleconnections exist
between climate modes and regional climate at various tem-
poral and spatial scales, tight interconnections are expected
to exist among these climate modes (Rossi et al., 2011). In
addition, acting as the primary regulator of the energy bud-
get of the climate system, the external forcings of climate
system (e.g., solar activities) impose extensive influences on
various climate modes (e.g., ENSO and NAO) (Kirov and
Georgieva, 2002; Velasco and Mendoza, 2008). Thus, it ap-
pears to be promising to identify the interconnections among
major climate modes and their common driving factors. As
the indicators of climate modes, many climate indices (e.g.,
SST anomaly in the Niño 3.4 region for ENSO) have been
proposed and widely used to investigate the dynamic pro-
cesses and physical mechanisms within the climate system
(Dai, 2006; Steinman et al., 2015; Wang et al., 2017). How-
ever, the major barrier to clarifying the interconnections of
these climate indices is how to effectively extract the driv-

ing forces and identify their corresponding essential driving
factors.

It is well recognized that most of the time series observed
in the real world are nonstationary because of the effects of
external perturbations (Verdes et al., 2001). Climate is in gen-
eral a nonstationary dynamic system. As such, the driving
forces in the variations of major climate modes remain diffi-
cult to determine. Some pioneering works have been con-
ducted to overcome this daunting challenge. For example,
Yang et al. (2003) proposed a physical conceptual framework
within which the nonstationary features of the climate system
are relevant to the characteristics of a hierarchical structure:
the driving force originating from a higher-hierarchy subsys-
tem controls the behaviors of a lower-hierarchy subsystem
in a cascade way. Compared to the dynamic reality man-
ifested in the lower-hierarchy subsystem, the driving force
of the higher-hierarchy subsystem is a much slower process.
In other words, the essential differences between higher and
lower subsystems are reflected in scale and energy. Many ef-
forts have been devoted to extracting information on driving
forces from the dynamic system (Verdes et al., 2001; Wiskott
et al., 2002; Yang et al., 2016). Slow feature analysis (SFA)
is an algorithm that was developed to extract the slowly vary-
ing features from nonstationary time series, which provides a
direct and effective approach to identify the driving forces of
a nonstationary dynamic system. Based on idealized models
(e.g., tent map and logistic map), recent studies have demon-
strated that SFA can extract slowly varying driving forces and
subcomponent signals from fast-varying nonstationary time
series even without any prerequisite knowledge about the un-
derlying dynamic system and its driving forces (Wiskott et
al., 2002; Konen and Koch, 2011; Escalante-B and Wiskott,
2012).

Considering that the driving-force signal of a dynamic
system often consists of different components with vari-
ous timescales, Pan et al. (2017) robustly detected indepen-
dent driving-force factors that contain significant peak peri-
ods from the SFA-extracted signals by combing SFA with
wavelet analysis (Torrence and Compo, 1998). Recently, this
kind of technique that combines the SFA with wavelet anal-
ysis has also been applied to detect the external and internal
driving-force signals responsible for the variations of a re-
gional climate, such as the drought variability in the south-
western United States (F. Zhang et al., 2017), the tempera-
ture variations in central England (Wang et al., 2017) and the
Northern Hemisphere (Yang et al., 2016), and the oscillations
of stratospheric ozone concentration (Wang et al., 2016). In
this study, we employed this new approach to understand
the interconnections among major climate modes and their
primary driving factors. The remainder of this paper is or-
ganized as follows. The data and methods are described in
Sects. 2 and 3, respectively. The main results are presented
in Sect. 4, followed by the conclusions and a discussion in
Sect. 5.
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Figure 1. Normalized monthly time series of six climate indices
during each period (gray lines): NINO (01/1870–12/2018), SOI
(01/1866–12/2017), PDO (01/1900–12/2017), AMO (01/1856–
12/2018), NAO (01/1825–12/2017), and NAOI (01/1850–12/2015)
with their corresponding SFA-derived slow feature signals (red
lines), which are indicated by Snino, Ssoi, Spdo, Samo, Snao, and
Snaoi, respectively (setting embedding dimension m to be 11).

2 Data

We use monthly mean indices to represent four widely inves-
tigated climate modes (ENSO, PDO, AMO, and NAO) that
were developed and provided by NOAA (https://psl.noaa.
gov/gcos_wgsp/Timeseries/, last access: 1 March 2020). Fig-
ure 1 shows the normalized series of these climate indices.
These indices and their corresponding climate modes are de-
scribed briefly as follows.

2.1 ENSO

ENSO is well recognized as a natural ocean–atmosphere cou-
pled mode in the tropical Pacific (Deser et al., 2010) affect-
ing the global climate (Newman et al., 2003). El Niño (La
Niña) refers to the warming (cooling) phase of the tropical
Pacific Ocean occurring every 2–7 years. Meanwhile, the
anomalous warming or cooling conditions are linked to a
large-scale east–west seesaw air pressure pattern referred to
as the Southern Oscillation (Capotondi et al., 2015). El Niño
and the Southern Oscillation are two manifestations of the
ENSO phenomenon (Bjerknes, 1969). In this study, ENSO
is represented by both the Niño 3.4 index and the South-
ern Oscillation index (SOI). The Niño 3.4 index (1870/01–

2018/12, hereafter referred to as NINO) is defined as the SST
anomalies in the Niño 3.4 region (5◦ N–5◦ S; 170–120◦W)
based on the HadISST1 dataset (Rayner et al., 2003). The
SOI (1866/01–2017/12) is calculated from the observed stan-
dardized sea level pressure (SLP) differences between the is-
lands of Tahiti and Darwin, Australia (Ropelewski and Jones,
1987).

2.2 PDO

PDO is the dominant pattern of decadal variability in North
Pacific SST, which has been widely studied across different
disciplines (Newman et al., 2016). A previous study shows
that the changing phase of PDO affects the anomalies of at-
mospheric circulation around the North Pacific Ocean basin
and even the Southern Hemisphere (Mantua and Hare, 2002).
The characteristic period of PDO is 50–60 years, and a warm
or cold phase of PDO can typically persist for about 20–
30 years. If PDO is in its positive phase, the North Pa-
cific Ocean turns colder and the Middle East Pacific Ocean
turns warmer; otherwise, it is in a negative phase. In this
study, PDO is defined by the leading principal component
of monthly SST anomalies in the Pacific basin (poleward of
20◦ N) during 1900–2017 (Mantua et al., 1997).

2.3 AMO

AMO is a dominant signal of climate variability in the North
Atlantic SST, which has a statistically significant spectral
peak in the 50–70-year band (Schlesinger and Ramankutty,
1994; Sun et al., 2015). Related studies have suggested that
AMO is an inner variability of the climate system modulat-
ing hemispheric climate change (Zhang, 2007; Knight et al.,
2006). The slow variation of the Atlantic meridional over-
turning circulation (AMOC) plays a dominant role in the
Atlantic multidecadal variability of SST (Zhang, 2017; Del-
worth and Mann, 2000; Garuba et al., 2018). The AMO is de-
fined by the detrended area-weighted average SST over the
North Atlantic (from 0 to 70◦ N) during 1856–2018 based
on the Kaplan SST dataset (Enfield et al., 2001). Both un-
smoothed and smoothed AMO indexes are available. The
high-frequency variability of the smoothed AMO index has
been removed by a common 121-month filter. We choose to
use the unsmoothed AMO index in this study.

2.4 NAO

The NAO is active in the North Atlantic region, which is
characterized by a large-scale seesaw in atmospheric mass
between the subtropical high and the polar low (Li and
Wang, 2003). It manifests as climate fluctuations at multi-
ple timescales ranging from interannual to multidecadal vari-
abilities (Jones et al., 1997; Li et al., 2013), affecting the cli-
mate within and around the North Atlantic Ocean basin and
even the entire Northern Hemisphere (Wallace and Gutzler,
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1981; Hurrell, 1995; Li et al., 2013; Delworth et al., 2017;
Jajcay et al., 2016). Although the climatic effect of the NAO
is most pronounced in winter, it is the dominant mode of at-
mospheric circulation in the North Atlantic sector through-
out the whole year. A previous study suggested that the NAO
drives the North Atlantic SST anomalies at a timescale less
than 10 years (Delworth et al., 2017). The NAO index is typ-
ically defined as a meridional dipole mode (which has lately
been suggested to be a three-pole pattern; Tsonis et al., 2008)
in atmospheric pressure with two centers of action in Iceland
and the Azores during 1825–2017. For comparison, we also
examine another observationally based monthly NAO index
for the period 1850–2015 (hereafter referred to as NAOI),
which is defined by the difference in the normalized sea level
pressure (SLP) that is zonally averaged over the North At-
lantic sector from 80◦W to 30◦ E between 35 and 65◦ N (Li
and Wang, 2003; http://ljp.gcess.cn/dct/page/65610, last ac-
cess: 1 March 2020). The NAOI is calculated based on the
HadSLP dataset with the reference period of 1961–1990.

3 Methods

3.1 Slow feature analysis (SFA)

Based on time-embedding theorems, one-dimensional time
series can turn into a multidimensional system. For this
multidimensional input system, the SFA acts as a nonlin-
ear method that uses a nonlinear expansion to map the in-
put signal into a feature space and solves a linear problem
(Blaschke et al., 2006). The objective of SFA is to find in-
stantaneous scalar input–output functions that generate out-
put signals that vary as slowly as possible but still carry sig-
nificant information. To ensure this, we require the output
signals to be uncorrelated and have unit variance (Franzius
et al., 2011).

Consider a time series {x(t)}t=t1,...,tn , where t denotes time
and n indicates the length of the time series. First, we embed
{x(t)} into an m-dimensional state space:

X (t)= {x1 (t) ,x2 (t) , . . .,xm (t)}t=t1,...,tN ,

where N = n−m+ 1. Then nonlinear expansions (usu-
ally second-order polynomials) are used to generate a k-
dimensional function state space:

H(t)=
{
x1(t), . . .,xm(t),x2

1(t), . . .,x1(t)xm(t),

. . .,x2
m−1 (t) , . . .,x2

m (t)
}
t=t1,...,tN

,

which can also be written as H (t)=
{h1 (t) ,h2 (t) , . . .,hk (t)}t=t1,...,tN , where

k =m+m(m+ 1)/2.

Then, the expanded signal H (t) is normalized so that it satis-
fies the constraints of zero mean and unit variance. This pro-

cess is referred to as whitening or sphering. Thus, we have

H′ (t)=
{
h1 (t) ,h′2 (t) , . . .,h′k (t)

}
t=t1,...,tN

, where

h′j = 0 (zero mean),

h′jh
′T
j = 1 (unit variance),

h′j (t)=
[
hj (t)−hj

]
/S, and S =

1
k

√∑k

j=1
(hj (t)−h)2.

Using the Schmidt algorithm, H′(t) is orthogonalized into

Z (t)= {z1 (t) ,z2 (t) , . . .,zk (t)}t=t1,...,tN .

Thus, each output signal can be expressed as the following
linear combination:

y (t)= a1z1 (t)+ a2z2 (t)+ . . .+ akzk (t) ,

where (a1,a2, . . .,ak) is a set of weighting coefficients.
Note that the output signals are orthogonal and nontrivial:

zi (t) · zj (t)= 0,

zi (t)= zj (t)= 0,

zj (t) · zTj (t)= 1.

Subsequently, we perform first-order differencing on Z(t) to
obtain the derivative function space:

żj (ti)= zj (ti+1)− zj (ti)

Ż (t)= {ż1 (t) , ż2 (t) , . . ., żk (t)}t=t1,...,tN .

Then we calculate the time-derivativeK×K covariance ma-
trix B= ŻŻT , where its eigenvalues are λ1 ≤ λ2 ≤ . . .≤ λk
and the corresponding eigenvectors are W 1, . . .,W k . Finally,
using W 1, the driving force can be written as

y1 (t)= rW 1 ·Z (t)+ c,

where r and c are two arbitrary constants that are derived
from the quadrature of y(t) and the solution of W 1, respec-
tively.

3.2 Wavelet analysis

Wavelet analysis is widely used to analyze localized struc-
tures and spectral properties of time series. Torrence (1998)
provided a useful tool kit to conduct wavelet analysis step by
step, including a statistical significance test. The tool kit can
be accessed from the following website: http://paos.colorado.
edu/research/wavelets/ (last access: 1 March 2020).

In this study, we use the Morlet wavelet that offers a high
spectrum resolution. The wavenumber is set to 4, represent-
ing a lower-resolution wavelet scale to analyze the time-
averaged global power spectrum of climate indices. A pre-
vious study based on idealized models shows that the signifi-
cant peak periods of the SFA-derived signal correspond well
to the driving-force factors (Pan et al., 2017). Here we focus
on the peak periods that are statistically significant at the 0.05
significance level.

Earth Syst. Dynam., 11, 525–535, 2020 https://doi.org/10.5194/esd-11-525-2020

http://ljp.gcess.cn/dct/page/65610
http://paos.colorado.edu/research/wavelets/
http://paos.colorado.edu/research/wavelets/


X. Pan et al.: On the interconnections among major climate modes 529

4 Results

As the first step, we set the embedding dimension m to 11
(within 1 year) for the SFA and extract each driving-force
signal from six climate indices, which are denoted as Snino,
Ssoi, Spdo, Samo, Snao, and Snaoi. Figure 1 shows the varia-
tions of these SFA-extracted driving-force signals (red lines)
along with the native time series (gray lines) of climate in-
dices. It should be noted that the slowly varying signals ex-
tracted by the SFA are essentially different from the low-
frequency signal obtained by low-pass filtering. In contrast to
the quickly varying and lack-of-feature native climate index
time series, the slowly varying signals appear to be a mixture
of driving factors.

Figure 2 shows the time-averaged power spectrum of these
driving-force signals as reconstructed by SFA. The blue dots
indicate the peak periods that have passed the significance
test at the 0.05 level. Results show that each SFA-extracted
signal involves significant peak periods at interannual to mul-
tidecadal timescales. Table 1 lists the statistically signifi-
cant peak periods of each climate indices. We find that four
base independent peak periods (i.e., 2.32, 3.90, 6.55, and
11.02 years) exist among different climate indices. Other
peak periods of the SFA-derived signals from different cli-
mate indices can be expressed as integral multiples of the
above base periods. For the sake of convenience, the above
base peak periods and their corresponding harmonic periods
are denoted by integral multiples of Tq (purple), Te1 (light
blue), Te2 (dark blue), and Ts (orange), respectively.

The peak period of 2.32 years (Tq, around 28 months) co-
incides with the cycle of the quasi-biennial oscillation (QBO)
(Baldwin et al., 2001), which is the dominant pattern of vari-
ability in the tropical stratosphere and displays alternating
downward-propagating easterly and westerly wind regimes.
Although the QBO is a tropical stratospheric phenomenon,
it affects not only the chemical constituents (e.g., water va-
por, ozone, etc.) but also the stratospheric flow from pole
to pole by changing the influences of extratropical waves.
Specifically, through the effects on the polar vortex, the QBO
modulates surface weather patterns indirectly (Baldwin et al.,
2001). Previous studies suggested that the temperature gradi-
ent between the troposphere and stratosphere can modulate
the Walker circulation and SST anomalies in the equatorial
Pacific Ocean by altering the atmospheric stability and trop-
ical deep convection (Huang et al., 2012).

We cautiously infer that the two periods (i.e., 3.90 years
for Te1 and 6.55 years for Te2) are related to the intrinsic
interannual variability of ENSO activities, and the period of
11.02 years (Ts) corresponds well to the Schwabe sunspot
cycle (11 years). The results of harmonic analysis show that
the peak periods of the SFA-derived signals from different
climate indices can be expressed as integral multiples of base
independent periods (i.e., Tq, Te1, Te2, and Ts), implying
that these four independent periods associated with the QBO,
ENSO, and solar activity can be regarded as three common

driving factors for the variabilities of ENSO, PDO, AMO,
and NAO.

Note that in Fig. 2, even though NAO and NAOI represent
the same mode, the results are a bit different. The reason is
that Fig. 2 is an illustration for an embedding dimension to
13. However, as Fig. 3 shows, when we vary the embedding
dimension from 1 to 25, the peak periods of both NAO and
NAOI show robust relations with ENSO, QBO, and solar ac-
tivities. In a way, repeating for many embedding dimensions
serves as a sensitivity analysis to see if the results are ro-
bust. Thus, even though this work does not directly assess
the uncertainties on the peak values, our approach provides
evidence of their robustness. In the Supplement, we present
further results using an ideal model to confirm the effective-
ness and robustness of the approach that combines SFA with
wavelet analysis in extracting the driving factors of the dy-
namic system and their peak values. The results show that
the significant peak periods of the SFA-derived signal reflect
the true independent driving factors (Supplement Table S1;
Figs. S1–S3).

Given that the driving-force signal consists of several com-
ponents, the selection of embedding dimension m may af-
fect the phase-space reconstruction of time series (Konen and
Koch, 2011; Yang et al., 2016). Considering that the peak pe-
riods of SFA-extracted driving-force signals may be sensitive
to the embedding dimension m as set in SFA, we conduct
an additional analysis by increasing m from 1 to 25 months
(covering 2 years) to detect the significant peak periods of
these driving-force signals. As Fig. 3 shows, all the signifi-
cant peak periods can be represented as the integral multiples
of Tq, Te1, Te2, and Ts, which confirms that the three above-
mentioned driving factors (QBO, the intrinsic variabilities of
ENSO, and solar activities) are the common driving factors
for the variabilities of ENSO, PDO, AMO, and NAO.

We further exploit the information involved in Fig. 3 and
decompose it into tables. Table 2 shows the number of em-
bedding dimensions by which a peak period is significant
for each index. The two columns show the peak periods
and their corresponding identifier (forcing). If the number
is greater than 10, we highlight it in bold. Taking Snino
for example, the entries in Table 2 show that 15/25 embed-
ding dimensions have a significant peak value at the period
of 74.13 years (32Tq); 12/25 embedding dimensions have
a significant peak value at the period of 3.90 years (Te1);
16/25 embedding dimensions have a significant peak value
at the period of 5.51 years (0.5Ts); and 17/25 embedding
dimensions have a significant peak value at the period of
11.02 years (Ts).

As shown in Table 2, each climate mode can be modu-
lated by various driving factors that generate harmonic oscil-
lations at different timescales. For instance, QBO presents
four harmonic oscillations from interannual (9.27 years)
to multidecadal (74.13 years) periods on NINO variability.
The intrinsic variability of ENSO presents five harmonic
oscillations from intra-seasonal (0.2 years) to multidecadal
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530 X. Pan et al.: On the interconnections among major climate modes

Table 1. The peak periods of slow feature signals and their classification.

Figure 2. The time-averaged power spectrum of SFA-extracted (m= 11) slow feature signals for six climate indices; the significant points
(blue dots) with peak power that pass the significance test at the 0.05 significance level (black dashed lines) are also indicated.

(52.42 years) timescales on the NAO variability. Similar re-
sults can be found for other climate indices.

In addition, we found that different climate indices involve
the same driving harmonic oscillations. For instance, both
PDO and AMO are modulated by the period of 9.27 years,
which is a QBO-related harmonic oscillation. Both NINO
and SOI are modulated by the period of 3.90 years, which we
infer is linked to the intrinsic ENSO cycle. Both NINO and
PDO are modulated by the interannual period of 5.51 years,
which is a harmonic oscillation of solar activity.

The results displayed in Fig. 3 and Table 2 can be alter-
natively presented in Tables 3 and 4. In Table 3 the columns
are the driving factors (Tq, Te1, Te2, and Ts) and the rows
are the climate indices. The entries in the table show the
harmonic(s) of driving-force factors affecting each index in
more than 10 embedding dimensions. It shows that ENSO-
Te1 presents the fewest harmonic peak periods and that solar,
QBO, and ENSO-Te2 present an equally similar number of
peak periods in shaping the variability of climate indices. Ta-
ble 4 further shows the corresponding driving harmonic os-
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Figure 3. The significant peak periods of the SFA-extracted slow
feature signals in six climate indices when setting different embed-
ding dimensions from 1 to 25.

cillations that modulate the variability of climate indices on
various timescales (periods) for all embedding dimensions.
The entries in bold correspond to the highlighted entries in
Table 2.

As shown in Table 4 the driving harmonic oscillations
among different climate indices are diverse and complicated
in periods less than 20 years in most conditions. Taking
NAOI as an example, there are up to five driving harmonic
oscillations on similar timescales (1–5 years). Nevertheless,
the driving harmonic oscillations in the multidecadal period
of 50–55 years are only related to ENSO-Te2, and the ones
in the period of 60–65 years are only associated with ENSO-
Te1. For the driving harmonic oscillations in the period of
70–75 years, the QBO is identified as the primary influenc-
ing factor. The driving harmonic oscillations in the period of
80–85 years appear to be linked to Ts.

Based on the results obtained by combining SFA with
wavelet analysis, we find that all the detected peak peri-
ods can be represented as the integral multiples of the base
peak periods associated with QBO, intrinsic variabilities of
ENSO, and solar activities. Considering that the time se-
ries of AMO used in this study is unsmoothed, we repeat
the analysis by using the smoothed AMO index (with a 121-
month smoother). The peak periods detected in the smoothed
time series are exactly the same as the ones based on the
unsmoothed index (figure not shown). This means that the

Table 2. The entries show, for each index, the number of embedding
dimensions in which a peak period is significant. The left column
lists the periods, and the right column shows the identifiers (forc-
ings). If the number is greater than 10, it is highlighted in bold.

Periods Snino Ssoi Spdo Samo Snao Snaoi Identifier

0.58 1 0.25Tq
1.16 4 0.5Tq
2.32 4 Tq
4.63 7 2Tq
9.27 1 25 25 4Tq
18.53 5 15 14 8Tq
37.06 7 24 16Tq
74.13 15 7 25 32Tq

0.49 2 Te1/8
0.97 3 6 Te1/4
3.90 12 13 6 Te1
7.79 7 9 9 2Te1
15.58 5 1 4Te1
62.33 25 17 16Te1

0.20 1 Te2/32
3.28 6 10 3 0.5Te2
6.55 20 6 Te2
13.10 3 12 7 3 2Te2
26.21 7 25 4 4Te2
52.42 17 25 11 8Te2

2.75 5 4 0.25Ts
5.51 16 19 0.5Ts
11.02 17 11 20 Ts
22.04 12 2Ts
44.08 10 4Ts
88.15 15 23 8Ts

Table 3. The entries in the table show the harmonics of the basic
driving forces (significant when affecting an index in more than 10
different embedding dimensions) for each climate mode index.

Climate indices
Tq Te1 Te2 Ts

(QBO) (ENSO) (ENSO) (solar)

NINO 32 1 – 0.5, 1
SOI – 1 1, 2, 8 1
PDO 4, 8, 16 16 – 0.5
AMO 4, 32 – 4, 8 –
NAO 8 16 0.5 1, 8
NAOI – – 8 2, 4, 8

preprocessing of the AMO index has little effect on the ap-
plication of SFA and its related results.

5 Conclusions and discussion

In this study, we identify four independent base peak pe-
riods: Tq (2.32 years), Te1 (3.90 years), Te2 (6.55 years),
and Ts (11.02 years). We cautiously infer that these base
peak periods are essentially associated with the QBO cycle,
two intrinsic ENSO cycles, and the solar cycle, respectively.
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Table 4. The basic driving forces and their harmonic oscillations that are associated with the variability of climate mode indices at various
timescales (periods) for all embedding dimensions. The entries in bold correspond to the highlighted numbers in Table 3.

Scales Snino Ssoi Spdo Samo Snao Snaoi

< 1 year Te1/8, Te1/4 0.25Tq, Te1/4, Te2/32

1–5 years Te1 Te1, 0.5Te2 0.5Tq, 0.5Te2, 0.25Ts Tq, 2Tq, Te1, 0.5Te2, 0.25Ts

5–10 years 4Tq, 2Te1, 0.5Ts Te2 4Tq, Te2, 0.5Ts 4Tq 2Te1 2Te1

10–15 years 2Te2, Ts, 2Te2, Ts 2Te2 Ts 2Te2
15–20 years 8Tq, 4Te1 8Tq 8Tq 4Te1
20–25 years 2Ts
25–30 years 4Te2 4Te2 4Te2
30–35 years
35–40 years 16Tq 16Tq
40–45 years 4Ts
45–50 years
50–55 years 8Te2 8Te2 8Te2
55–60 years
60–65 years 16Te1 16Te1
65–70 years
70–75 years 32Tq 32Tq 32Tq
75–80 years
80–85 years
85–90 years 8Ts 8Ts

Other detected significant peak periods can be represented
by the integral multiples of these four base periods. This
implies that the QBO, ENSO, and solar activities could be
three key periodic driving factors in global climate variabil-
ity. These results provide possible clues for the intricate rela-
tionships between driving forces and their harmonics in the
variability of major climate modes as well as the coupling
paths among them. The finding of the interconnections of
major climate modes indicates that using statistical models
to predict decadal to multidecadal climate variability could
be promising in the future. It should be noted that uncertain-
ties still exist in the multidecadal variability of ENSO and
QBO. The relatively long peak periods (e.g., 52.42, 62.33,
74.13, and 88.15 years) detected by SFA may result from the
effect of continuous wavelet transform.

Recent studies on complex climate networks have pro-
vided new insights into how the collective behavior of major
climate modes affects global temperature variations (Tsonis
et al., 2007; Tsonis, 2018). By considering a network of ma-
jor climate modes (more or less the same set as here) and the
theory of synchronized chaos, these previous studies found
that the network may synchronize temporally. During syn-
chronization, the increased coupling strength among the cli-
mate modes may lead to the destruction of the synchronized
state, which leads to changes in the trends of global temper-
ature and the amplitudes of ENSO variability on decadal to
multidecadal timescales. These studies proposed a dynamical
mechanism and its related physical causes for the observed
climate shifts. The idea that the interaction between major

Figure 4. The 3-D super-loop NAO→PDO→ENSO→
PNA→ stratosphere→NAO, which may capture the essence of
low-frequency variability in the Northern Hemisphere.

climate modes plays a significant role in climate variability
has found many applications in the last decade or so.

Solid dynamical arguments and past work offer a con-
crete picture of how the physics may play out (Wang et
al., 2009). NAO, with its huge mass rearrangement in
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the North Atlantic, affects the strength of the westerly
flow across midlatitudes. At the same time, through its
“twin”, the Arctic Oscillation (AO), it affects sea level
pressure patterns in the northern Pacific. This process
is part of the so-called intrinsic midlatitude Northern
Hemisphere variability. Then, this intrinsic variability,
through the seasonal “footprinting” mechanism, couples
with equatorial wind stress anomalies, thereby acting as
a stochastic forcing of ENSO. Subsequently, ENSO, with
its effects on PNA, can influence the lower stratosphere
through the vertical propagation of Rossby waves, and in
turn the stratosphere influences NAO through the down-
ward progression of Rossby waves. These results, coupled
with our results, suggest the following 3-D super-loop
NAO→PDO→ENSO→PNA→ stratosphere→NAO,
which may capture the essence of low-frequency variability
in the Northern Hemisphere (Fig. 4).

While still more work is needed on the physical and dy-
namical links among major climate modes and their inter-
actions, our results here provide additional possible play-
ers in the above picture. Solar activity can be linked to the
stratosphere (see Roy, 2018, for example). Solar activity af-
fects the QBO and thus the stratosphere, which together with
ENSO are implicated in this 3-D loop. Our results provide
further new insights into those dynamical mechanisms and
how the complex interactions among the base driving fac-
tors and their harmonics may cause peak periods in climate
modes and thus affect climate variability.
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