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CMIP5 model Ensemble 
member 

CMIP6 model Ensemble 
member 

CMIP6 DOI 

bcc-csm1-1-m r1i1p1 BCC-CSM2-MR r1i1p1f1 10.22033/ESGF/CMIP6.2948 
bcc-csm1-1 r1i1p1 CAMS-CSM1-0 r2i1p1f1 10.22033/ESGF/CMIP6.9754 
BNU-ESM r1i1p1 CESM2 r1i1p1f1 10.22033/ESGF/CMIP6.7627 
CanESM2 r1i1p1 CESM2-WACCM r1i1p1f1 10.22033/ESGF/CMIP6.10071 
CCSM4 r1i1p1 CNRM-CM6-1 r1i1p1f2 10.22033/ESGF/CMIP6.4066 
CESM1-CAM5 r1i1p1 CNRM-ESM2-1 r1i1p1f2 10.22033/ESGF/CMIP6.4068 
CNRM-CM5 r1i1p1 CanESM5 r10i1p1f1 10.22033/ESGF/CMIP6.3610 
CSIRO-Mk3-6-0 r1i1p1 EC-Earth3 r11i1p1f1 n/a 
EC-EARTH r8i1p1 EC-Earth3-Veg r1i1p1f1 10.22033/ESGF/CMIP6.4706 
FGOALS-g2 r1i1p1 FGOALS-f3-L r1i1p1f1 10.22033/ESGF/CMIP6.3355 
FIO-ESM r1i1p1 FGOALS-g3 r1i1p1f1 10.22033/ESGF/CMIP6.3356 
GFDL-CM3 r1i1p1 GFDL-ESM4 r1i1p1f1 10.22033/ESGF/CMIP6.8597 
GFDL-ESM2G r1i1p1 INM-CM4-8 r1i1p1f1 10.22033/ESGF/CMIP6.5069 
GFDL-ESM2M r1i1p1 INM-CM5-0 r1i1p1f1 10.22033/ESGF/CMIP6.5070 
GISS-E2-H r1i1p1 IPSL-CM6A-LR r1i1p1f1 10.22033/ESGF/CMIP6.5195 
GISS-E2-R r1i1p1 MCM-UA-1-0 r1i1p1f2 10.22033/ESGF/CMIP6.8888 
HadGEM2-AO r1i1p1 MIROC-ES2L r1i1p1f2 10.22033/ESGF/CMIP6.5602 
HadGEM2-ES r1i1p1 MIROC6 r1i1p1f1 10.22033/ESGF/CMIP6.5603 
IPSL-CM5A-LR r1i1p1 MPI-ESM1-2-HR r1i1p1f1 10.22033/ESGF/CMIP6.6594 
IPSL-CM5A-MR r1i1p1 MRI-ESM2-0 r1i1p1f1 10.22033/ESGF/CMIP6.6842 
MIROC5 r1i1p1 UKESM1-0-LL r1i1p1f2 10.22033/ESGF/CMIP6.6113 
MIROC-ESM-
CHEM 

r1i1p1 
   

MIROC-ESM r1i1p1 
   

MPI-ESM-LR r1i1p1 
   

MPI-ESM-MR r1i1p1 
   

MRI-CGCM3 r1i1p1 
   

NorESM1-ME r1i1p1 
   

NorESM1-M r1i1p1 
   

  

Table S1: CMIP5 and CMIP6 models and ensemble members used. 
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S1. Time period over which to estimate internal variability 15 

Explosive volcanic eruptions can significantly affect global and regional climate in subsequent years 

(Swingedouw et al. 2015; Lehner et al. 2016). If internal variability I of a quantity is calculated over time and 

including volcanic eruptions (for example over 1950-2014), it might be larger than when calculated without 

volcanic eruptions (for example over 2015-2099). Here, we quantify this potential effect by calculating I over 

different time periods. Note that here in the Supplementary Information, I is given in standard deviations for 20 

legibility, while in the main text I is given as variance for mathematical reasons. For a single simulation from a 

single model (like in CMIP), I is calculated as the standard deviation of the residual of the Hawkins and Sutton 

(2009; HS09) approach applied to historical and future simulations (Iresidual). For global decadal mean annual 

temperature in the SMILEs, the multi-model mean Iresidual over 1950-2014 (0.063 K) is indeed larger than over 

1950-2099 (0.054 K), which is again larger than 2015-2099 (0.047 K; Fig. S1a). However, the differences are 25 

small and fall within the range of Iresidual across models (Fig. S1a). Very similar results are found for CMIP5 

(0.066 K, 0.057 K, 0.048 K) and CMIP6 (0.057 K, 0.052 K, 0.047 K), except the range of Iresidual across models 

is even larger than in SMILEs (Fig. S1b-c). 

 

In SMILEs, internal variability I can also be calculated as the across-member standard deviation (Iacross), such 30 

that I at any point in time might be expected to be independent from (or at least less affected by) volcanic 

eruptions, as all members experience the impact of the eruption simultaneously. Investigating Iacross shows that 

this is not necessarily the case, with Iacross for 1950-2014 being largest and Iacross for 2015-2099 being smallest 

(Fig. S1a), however, the differences between time periods are even smaller than for Iresidual (0.067 K, 0.065 K, 

0.062 K). The general similarity of Iresidual and Iacross also confirms again that the HS09 approach for separating 35 

forced response and internal variability works well for global temperature. 

 

Finally, the variability from ‘piControl’ simulations Icontrol is shown. In this case, variability is calculated over the 

last 252 years of each model’s piControl simulation (a common length among models) after linearly detrending 

and applying a 10-year running mean. Icontrol is generally comparable to Iresidual (and Iacross in case of the SMILEs), 40 

except for a few models (e.g., GFDL-ESM2M, bcc-csm1-1m, BCC-CSM2-MR, CNRM-ESM2-1, EC-Earth3, 

EC-Earth3-Veg, GFDL-ESM4) which show large unforced decadal variability in piControl, the reasons for 

which remains to be investigated. The clustering of such high-variability piControl simulations in CMIP6 yields 

a multi-model mean Icontrol that is substantially higher in CMIP6 than in CMIP5 or SMILEs (Fig. S1c). 

 45 

In summary, there exists a sensitivity to the choice of period over which variability is estimated, but it is of 

secondary importance compared to differences in variability magnitude between models. In the main text, we 

use 1950-2099 as the time period to estimate internal variability (Iresidual) for CMIP5 and CMIP6. 
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 50 
Figure S1: Standard deviation of global decadal mean annual temperature from (a) SMILEs, (b) CMIP5, and (c) CMIP6. In 

case of SMILEs, the average of all ensemble members is shown for each model. The multi-model mean and 10-90% range is 

given on the right end of the bar plots. Observations are from Rohde et al. (2013). 
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S2. Role of choice of scenario uncertainty 55 

Estimating scenario uncertainty S is complicated by several factors: (1) The scenarios that climate model are run 

with represent only a subsample of available scenarios (Riahi et al. 2017). Although the representative scenarios 

chosen in CMIP5 and CMIP6 span a large range of possible future radiative forcing pathways, this subjective 

choice will always limit the CMIP archives to be “an ensemble of opportunity” rather than a true probabilistic 

assessment of future climate change. The scenarios are also not symmetrically distributed in radiative forcing 60 

space. (2) Not all modelling centers ran each of the chosen scenarios. Even rarer is the case where a modelling 

center ran a SMILE for each scenario (e.g., MPI-LE with CMIP5 scenarios and CanESM5 with CMIP6 scenarios).  

(3) Different methods to calculate scenario uncertainty exist. Here we explore points (2) and (3) in more detail. 

 

Regarding (2), a compromise is necessary when one wants to estimate S from the available model simulations: 65 

either (i) use a consistent set of multiple models which ran at least one simulation per scenario, which means the 

forced response in any given model needs to be estimated via a statistical fit to one or few ensemble members 

available, or (ii) use a model that provides a SMILE for each scenario, which means the forced response for each 

scenario can be estimated more robustly, but the resulting S is model-specific. Here, we explore these two 

approaches at the example of global decadal mean temperature. In the main paper, we use S from CMIP5 (SCMIP5) 70 

for the uncertainty breakdown with SMILEs, using one simulation per CMIP5 model and scenario (green shading 

in Fig. S2a). We can also subselect the CMIP5 archive to just use the seven models that we have SMILEs for (see 

Table 1 in main paper) to calculate S (SSMILEs), but still just using one simulation per model and scenario (hatching 

in Fig. S2a). It can be seen that SCMIP5 and SSMILEs are very similar, suggesting that the SMILEs are a good 

representation of CMIP5. Then, we use the MPI-LE (Maher et al. 2019), which has 100 ensemble members for 75 

each of the CMIP5 scenarios RCP2.6, RCP4.5 and RCP8.5, to estimate S (SMPI-LE; cross hatching in Fig. S2a). 

SMPI-LE results in a smaller contribution from S to the total uncertainty. This is due to the relatively lower transient 

climate response of MPI compared to the multi-model mean of CMIP5 or SMILEs. Consequently, the trajectories 

of global temperature fan out slower across the different scenarios in MPI-LE than in more sensitive models, 

resulting in a smaller S. This is confirmed when just using data from CMIP5 (Fig. S2b), where SMPI-LE is also 80 

smaller than SCMIP5. The same exercise can be repeated for CMIP6, where the CanESM5-LE provides 50 ensemble 

members for each of the CMIP6 scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 (Swart et al. 2019). In 

this case, however, the S from CanESM5-LE (SCanESM5-LE) is almost always larger than the S from CMIP6 (SCMIP6), 

as CanESM5 constitutes a higher-sensitivity model among its CMIP6 cohort. While any of the approaches to 

estimate S for SMILEs are imperfect, we chose to use SCMIP5 in the main text due to it representing the expected 85 

true SSMILEs well. It also facilitates a clean comparison of SMILEs with CMIP5 with regards to the other sources 

of uncertainty (internal variability and model uncertainty), as S is kept consistent between SMILEs and CMIP5. 
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Figure S2: Fractional contribution of individual sources to total uncertainty for global annual decadal mean temperature in (a) 90 
SMILEs, (b) CMIP5, and (c) CMIP6. Scenario uncertainty for SMILEs in (a) is taken from (green shading) CMIP5, (cross 

hatching) MPI-LE, and (hatching) the models of the seven SMILEs. Scenario uncertainty in (b) is taken from (green shading) 

CMIP5 and (hatching) MPI-LE. Scenario uncertainty in (c) is taken from (green shading) CMIP6 and (hatching) CanESM5-

LE. 

 95 
 
Regarding (3), it has been argued that it is difficult to estimate S correctly with the HS09 approach when the multi-

model mean signal is weak and the sign of change uncertain (Brekke and Barsugli 2013; BB13). In HS09, S is 

calculated as the variance across multi-model means from different scenarios (SHS09). Thus, if models disagree on 

the sign of change, the multi-model means from the different scenarios can all be close to zero and close to each 100 

other – S would be small. However, S might actually be larger in any individual model. Thus, an alternative 

approach is to first calculate the variance across scenarios separately for each model (call this Sm) and then average 

all Sm to obtain S (SBB13). If there indeed is a consistent scenario dependence across models that is masked in SHS09, 

SBB13 would be larger than SHS09. We test this at examples of global temperature and Sahel precipitation (Fig. S3). 

For global temperature, models show a strong multi-model mean change and agree well on the sign of change, so 105 

SHS09 and SBB13 are almost identical (Fig. 3a-c). For Sahel precipitation, on the other hand, which shows a weak 

multi-model mean change and lack of model agreement (see also Fig. S4e), this is not the case and SBB13 is larger 

than SHS09 (Fig. 3d-f). Still, we choose SHS09 as the approach in the main paper due to consistency with HS09 and 

because the main focus of the paper is not on S but on the separation of internal variability and model uncertainty. 
 110 
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Figure S3: Fractional contribution of individual sources to total uncertainty for global annual decadal mean temperature in (a) 

SMILEs, (b) CMIP5, and (c) CMIP6. Scenario uncertainty is calculated as in (green shading) Hawkins and Sutton (2009), 

HS09, or as in (hatching) Brekke and Barsugli (2013). (d-f) same as in (a-c), but for Sahel JJA decadal mean precipitation.   115 
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Figure S4: Estimates of the forced response under RCP8.5 for (a-f) different regions and variables used in the main paper. 
For each CMIP5 model, the forced response is estimated as the 4th order polynomial, while for the SMILEs it is estimated as 
the ensemble mean. CMIP5 models are marked with thin red lines and SMILEs are marked with thick gray lines. The two 
GFDL models that are part of SMILEs are marked with thick blue and red lines. Overall, the SMILEs cover much of the 120 
range of CMIP5 models and the two GFDL models behave rather differently, even though they share components. 
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Figure S5: Decadal mean projections from SMILEs and fractional contribution to total uncertainty (using scenario 
uncertainty from CMIP5) for (a) global mean annual temperature, (b) global mean annual precipitation, (c) British Isles 125 
annual temperature, and (d) Sahel June-August precipitation. The pink color indicates the potential method bias and is 
calculated the same way as model uncertainty in the HS09 approach, except instead of different models and the 4th order 
polynomial, we use different ensemble mean estimates from the same SMILE. Specifically, we randomly select 16 members 
from the largest SMILE (MPI) to mimic the ensemble size of the smallest SMILE (EC-EARTH) and calculate the ensemble 
mean. We do this 100 times and calculate the variance across these ensemble means to be the potential method bias. Thus if 130 
the SMILE ensemble mean method were perfect, the bias would be zero. This bias here is also non-zero but substantially 
smaller than with the HS09 approach (see Fig. 5 in main text). 
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