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Abstract. Widespread flooding events are among the major natural hazards in central Europe. Such events are
usually related to intensive, long-lasting precipitation over larger areas. Despite some prominent floods during the
last three decades (e.g., 1997, 1999, 2002, and 2013), extreme floods are rare and associated with estimated long
return periods of more than 100 years. To assess the associated risks of such extreme events, reliable statistics
of precipitation and discharge are required. Comprehensive observations, however, are mainly available for the
last 50–60 years or less. This shortcoming can be reduced using stochastic data sets. One possibility towards this
aim is to consider climate model data or extended reanalyses. This study presents and discusses a validation of
different century-long data sets, decadal hindcasts, and also predictions for the upcoming decade combined to a
new large ensemble. Global reanalyses for the 20th century with a horizontal resolution of more than 100 km have
been dynamically downscaled with a regional climate model (Consortium for Small-scale Modeling – CLimate
Mode; COSMO-CLM) towards a higher resolution of 25 km. The new data sets are first filtered using a dry-day
adjustment. Evaluation focuses on intensive widespread precipitation events and related temporal variabilities
and trends. The presented ensemble data are within the range of observations for both statistical distributions
and time series. The temporal evolution during the past 60 years is captured. The results reveal some long-
term variability with phases of increased and decreased precipitation rates. The overall trend varies between the
investigation areas but is mostly significant. The predictions for the upcoming decade show ongoing tendencies
with increased areal precipitation. The presented regional climate model (RCM) ensemble not only allows for
more robust statistics in general, it is also suitable for a better estimation of extreme values.

1 Introduction

Ongoing climate change affects not only the global scale but
also impacts the regional climate. Regarding air temperature,
there is a more or less clear trend in the recent past, which
reveals a clear anthropogenic signal. However, various cli-
mate simulations show distinct differences for precipitation
trends, especially for heavy precipitation (e.g., Moberg et al.,
2006; Zolina et al., 2008; Toreti et al., 2010). A review of ob-
served variability and trends in extreme climate events states
that it is difficult to find significant relations between the
greenhouse-gas-enhanced climate change and increases or

decreases in extreme precipitation events (Field et al., 2012).
This is attributed to their rare occurrence, the general high
spatial variability of precipitation, and a lack of long-term
high-quality observations.

Magnitude and sign of heavy precipitation trends strongly
depend on various factors such as the regarded area or the
considered time period (e.g., Easterling et al., 2000). Global
tendencies towards more intense precipitation throughout the
20th century between summer and winter seasons also ac-
count for precipitation trends. For example, Moberg and
Jones (2005) found an increase in winter precipitation across
central and western Europe between 1901 and 1999, while
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Pal et al. (2004) found a decrease in summer precipitation for
the period 1951–2000. Dittus et al. (2016) found an increas-
ing trend between 1951 and 2005 in extreme total precipi-
tation amounts for Europe in global climate model (GCM)
simulations (Coupled Model Intercomparison Project phase
5; CMIP5). Similar trends were found in global reanalyses
(e.g., ERA-20C; Poli et al., 2016) but not in observations. In
contrast, Primo et al. (2019) found positive trends for two
ground-based observational stations in Germany using ex-
treme precipitation indices.

Model resolution is another crucial factor. The use of high-
resolution regional climate models (RCMs) instead of global
data sets revealed a more detailed and orographically re-
lated spatial structure of the precipitation fields and trends
(e.g., Feldmann et al., 2013). An increase of both areal mean
precipitation and extremes in central Europe on the order
of 5 %–10 % was found in RCM simulations by Feldmann
et al. (2013), which will continue with almost same magni-
tude for the next decade. Differences in precipitation trends
also stem from varying definitions of extreme events such as
certain thresholds, percentile-based indices, or return periods
(e.g., Maraun et al., 2010). While most of these studies show
trends in daily precipitation, just a few deal with subdaily
trends. Barbero et al. (2017), for instance, compared trends
in subdaily and daily extremes. Although significant increas-
ing trends were found for both time ranges, trends in daily
extremes are better detected than in subdaily extremes.

Spatially extended intensive rainfall events are frequently
related to widespread flooding along the main river networks
of central Europe causing major damage on the order of sev-
eral billion euros (EUR) per event (e.g., Uhlemann et al.,
2010; Kienzler et al., 2015; Schröter et al., 2015; MunichRe,
2017). A prominent example of such an extreme and devas-
tating event is the flood in 2012 along the Elbe and Danube
rivers (Ulbrich et al., 2003a, b). Such outstanding events are
by definition extremely rare, which makes the risk estima-
tion difficult or almost impossible due to the limited time pe-
riod with available area-wide observations (e.g., Pauling and
Paeth, 2007; Hirabayashi et al., 2013). However, trend anal-
yses of such extreme events and the related risks during the
past and for the future are of great importance for insurance
purposes or flood protection (e.g., Merz et al., 2014; Schröter
et al., 2015; Ehmele and Kunz, 2019).

A possible way of dealing with the unsatisfactory data
availability is through century-long simulations using cli-
mate models (e.g., Stucki et al., 2016) or stochastic ap-
proaches (e.g., Peleg et al., 2017; Singer et al., 2018; Ehmele
and Kunz, 2019). The currently used GCMs were found to
be in good agreement with the available but limited observa-
tions (Fischer and Knutti, 2016). Brönnimann et al. (2013)
and Brönnimann (2017) analyzed historical extreme events
using century-long reanalysis data sets and concluded that
the quality of the reanalyses strongly depends on the num-
ber and type of the assimilated observations. The investigated
historical events were reproduced, but the magnitudes were

underestimated. A possible reason is the decreasing number
and quality of observations early in the century and therefore
a lack of assimilation data. The suitability of reanalysis data
to investigate extreme precipitation for England and Wales
was investigated by Rhodes et al. (2015). While time series
of daily precipitation totals are well represented in both data
sets, timing errors of heavy precipitation events were identi-
fied as one of the major problems. Stucki et al. (2012) inves-
tigated historical flooding events in Switzerland and indicate
that the reanalyses underestimate precipitation in Switzer-
land which may result from the insufficient representation of
the alpine topography. The timing and the exact location of
heavy precipitation were also found to be inaccurate.

As shown by van der Wiel et al. (2019) or Martel et al.
(2020), large ensembles can have an added value for flood
risk estimation and for the calculation of return periods
of heavy precipitation. van der Wiel et al. (2019) found a
clear benefit in using an ensemble approach for the esti-
mation of changes in hydrological extremes including com-
pound events compared to traditional approaches. Martel
et al. (2020) found similar results, namely a reduction in the
projected return period of 100-year annual maximum precip-
itation with the different ensembles, albeit having different
model structures and resolutions. Furthermore, it was em-
phasized that a higher resolution is advantageous to predict
climate change signals over complex terrain. Other studies
also highlighted the improvements of using high-resolution
RCMs for the investigation of climate extremes (e.g., Feser
et al., 2011; Feldmann et al., 2008, 2013; Schewe et al.,
2019), especially over complex terrain (e.g., Torma et al.,
2015).

The studies mentioned above document partly contrasting
results and demonstrate the challenges arising when dealing
with extreme precipitation and related phenomena. In this
study, a set of different realizations with one RCM is used
and combined to the new LAERTES-EU (LArge Ensemble
of Regional climaTe modEl Simulations for EUrope), which
can be used for more profound statistical analyses. The ba-
sis is the global 20th Century Reanalysis (20CR) data set
(Compo et al., 2011), which was dynamically downscaled for
Europe. LAERTES-EU consists of a handful of 20th century
reanalysis data sets and a large ensemble of decadal hindcast
simulations mainly for the second half of the century. Al-
though all simulations were performed with the same RCM
version and setup, LAERTES-EU is a combination of differ-
ent external forcings, boundary conditions, and/or assimila-
tion. Predictions for the upcoming decade will round up our
analysis. The investigative focus lies on daily values of inten-
sive areal precipitation which can be associated with major
flood events in central Europe. As demonstrated, for exam-
ple, by Schröter et al. (2015), severe flood events along the
major river networks in central Europe are related to long-
lasting and widespread precipitation events of mainly strat-
iform origin with embedded convective precipitation. Typi-
cally, intensities do not reach the most extreme rates of the
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distribution but are characterized by high spatial mean val-
ues.

LAERTES-EU is validated in terms of coincidence with
observations regarding temporal variability, statistical dis-
tributions, and possible long-term trends. The following re-
search questions will be addressed.

1. How well is extreme areal precipitation represented in
the RCM ensemble LAERTES-EU?

2. What are potential benefits of LAERTES-EU compared
to other available data sets?

3. Which temporal evolution and variability of extreme
areal precipitation over central Europe have manifested
during the past?

4. Which tendency is expected for the upcoming decade?

A better interpretation of RCM data and a more profound
understanding of extreme areal precipitation may have sev-
eral applications such as risk assessments. Although they are
relevant, we do not handle the potential mechanisms behind
temporal variance and trends as well as spatial and seasonal
differences as this goes beyond the scope of this study.

This paper is structured as follows. The data sets which
were used in this study are introduced in Sect. 2. Section 3
sums up the methods used for the analysis and the validation.
In Sect. 4, LAERTES-EU is validated with observations for a
reference period. The investigation of temporal variabilities
and trends is given in Sect. 5. Finally, Sect. 6 gives a sum-
mary and lists our conclusions.

2 Data sets

Two different types of data sets are applied in this study:
gridded precipitation data based on observations and partly
century-long climate model simulations (LAERTES-EU).
The observational data sets are primarily available for the
second half of the 20th century and serve as reference data
for the validation of the ensemble. Furthermore, we compare
LAERTES-EU with the forcing global model and also with
the global 20CR data set (Compo et al., 2011), which were
used as initial data for some of the simulations.

2.1 Observations

The European observational data set (E-OBS) version 17 in-
cluding daily precipitation (Haylock et al., 2008; van den
Besselaar et al., 2011) is a gridded data set with a horizon-
tal resolution of 0.22◦ (≈ 25 km) covering the years 1950
to 2017. This version shows some improvements towards
older versions, since updated algorithms and new stations
have been included in some areas (e.g., for Poland). The E-
OBS algorithm interpolates observations from weather sta-
tions to a regular grid using geostatistical methods (e.g., Jour-
nel and Huijbregts, 1978; Goovaerts, 2000). Note that E-OBS

is a land-only data set and ocean grid points are set to a miss-
ing value. Haylock et al. (2008) stated that rainfall totals in E-
OBS are reduced by up to almost one-third compared to the
raw station data at the corresponding grid cells. Regarding
extremes, the deviation of E-OBS is even more pronounced
(Hofstra et al., 2009). Nevertheless, both studies stated that
the spatial mean precipitation in E-OBS is very close to other
observations.

Although E-OBS has some limitations, we use it as the
main reference for this study, as there is no other compara-
ble high-resolution daily precipitation data set available that
covers entire Europe for a long time period. Other products
like satellite data with a very limited time frame are not help-
ful and also have limitations. There are single ground-based
observations with very long time series, but as the focus of
this study is on intensive areal precipitation, these data are of
limited usefulness for validation.

In addition to E-OBS, we compare the RCM simulations
with the central European high-resolution gridded daily data
sets (HYdrological RASter data sets; HYRAS) provided by
the German Weather Service (DWD; Rauthe et al., 2013).
HYRAS is a gridded precipitation data set with a horizontal
resolution of up to 1 km for the time period 1951–2006 and
covers Germany and the surrounding river catchments. The
HYRAS algorithm also uses ground-based measurements
and interpolates the point observations to the regular grid.
For this study, the HYRAS data were first aggregated to the
E-OBS/RCM 25 km grid. HYRAS hereafter refers to this ag-
gregated 25 km data set.

2.2 Regional climate model simulations

LAERTES-EU combines a large number of regional dynam-
ical downscaling simulations for Europe performed with a
single RCM. The used RCM is the non-hydrostatic model
of the Consortium for Small-scale Modeling (COSMO) CLi-
mate Mode (CLM) version 5 (CCLM5; Rockel et al., 2008),
which has a spatial resolution of 0.22◦ (≈ 25 km). The model
covers the European domain of the Coordinated Downscal-
ing Experiment (EURO-CORDEX)1 (Jacob et al., 2014).
Overall, the simulations use the same domain, model ver-
sion, and setup, which was adapted from EURO-CORDEX
(Kotlarski et al., 2014). According to Feldmann et al. (2008),
a dry-day correction is important as climate models tend to
overestimate the number of wet days with low intensities be-
low 0.1 mm, known as the drizzle effect (Berg et al., 2012).
In order to reduce this typical bias, a dry-day adjustment was
first applied to LAERTES-EU. The E-OBS data were used
for this correction, as they have the same spatial extension
and resolution as the CCLM simulations. All simulations are
performed within the BMBF (Federal Ministry of Education
and Research of Germany) MiKlip II 2 project (Marotzke

1http://www.euro-cordex.net (last access: 20 May 2020).
2https://www.fona-miklip.de/ (last access: 20 May 2020).
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et al., 2016) to create and test a decadal prediction system
including a regional downscaling component for Europe.

For all downscaling simulations, the boundary conditions
were derived from the Max Planck Institute of Meteorology
coupled Earth System Model (MPI-ESM). This global model
consists of an atmospheric component (ECHAM6) (Stevens
et al., 2013), an ocean component (MPI-OM) (Jungclaus
et al., 2013), and a land-surface model (JSBACH) (Hage-
mann et al., 2013).

LAERTES-EU is divided into four different data blocks
(Table 1) depending on the setup of the forcing MPI-ESM
ensemble simulations. The differences between the four data
blocks stem from the setup, external forcing, and initializa-
tion of the MPI-ESM simulations. Data blocks 1 and 2 of
the RCM ensemble (compare Table 1) obtained the boundary
values from the MPI-ESM-LR simulations using a T63 res-
olution and 47 vertical layers. Data blocks 3 and 4 used the
MPI-ESM-HR version (Müller et al., 2018) as their driving
model. In this version, the horizontal resolution is T127 and
95 vertical layers are applied. Three types of forcing ensem-
bles can be distinguished:

i. MPI-ESM assimilates reanalysis data for long-term
simulations (data block 1);

ii. long-term historical-type simulations, according to the
CMIP5 specifications (data block 3; Taylor et al., 2012);
and

iii. initialized decadal (10-year) hind- and forecast simula-
tions (data blocks 2 and 4).

In data block 1, the first type (I) is applied. Here, the 20CR
data (Compo et al., 2011) are assimilated into the MPI-ESM-
LR (Müller et al., 2014). The 20CR data set has a spatial res-
olution of approximately 2◦ (T62) and was generated using
the Global Forecast System (GFS; Kanamitsu et al., 1991;
Moorthi et al., 2001) of the National Centers for Environ-
mental Prediction (NCEP)3. It used a 56-member ensem-
ble Kalman filter approach to assimilate surface pressure,
monthly sea surface temperature, and sea-ice observations.
Three of the 20CR members are assimilated into MPI-ESM
to provide long-term (110 years each) climate reconstruction
simulations over the period 1900–2009 (Müller et al., 2014).
Afterwards, a downscaling with CCLM uses these global
simulations as boundary conditions (e.g., Primo et al., 2019).

Data block 3 consists of the second type (II), where five so-
called historical simulations of MPI-ESM-HR with CMIP5
observed natural and anthropogenic external climate forc-
ing (Taylor et al., 2012) are used as boundary conditions for
CCLM. The ensemble was generated by starting the MPI-
ESM from arbitrary dates in a pre-industrial control simula-
tion (Müller et al., 2014). Three of the five CCLM members
cover the period 1900–2005 (106 years each). The two ad-

3http://www.ncep.noaa.gov/ (last access: 20 May 2020).

ditional simulations cover the period 1960–2005 (46 years
each).

Data blocks 2 and 4 consist of initialized decadal simula-
tions (type III). The starting conditions are derived from an
observed state (Müller et al., 2012; Marotzke et al., 2016).
For each starting year, an ensemble of decadal simulations is
generated and then, the initialization point is shifted by 1 year
(e.g., 1961–1970, 1962–1971, and so on). Due to the overlap,
a specific calendar year may be covered by several decadal
hindcasts with different starting years. These decadal hind-
and forecasts thus represent the current state of the major
modes of climate variability compared to the so-called unini-
tialized historical simulations (data block 3). The downscal-
ing procedure, the skill, and the added value are described
in Mieruch et al. (2014), Feldmann et al. (2019), and Reyers
et al. (2019).

In data block 2, the starting conditions of the three decadal
hindcast members with MPI-ESM-LR are derived from the
assimilation experiments in data block 1. The starting years
of the CCLM downscaling range from 1910 to 2009. This
means the last simulated year is 2019.

Data block 4 consists of two parts. Both of them use the
MPI-ESM-HR version. The so-called preop-ensemble has
five members. The external climate forcing is derived from
CMIP5. The starting years range from 1960 to 2016 (last
simulated year is 2026). The so-called dcppA-hindcast en-
semble has 10 members and uses the external forcing for
CMIP6 (Eyring et al., 2016). The global simulations are
a contribution to the Decadal Climate Prediction Project
of CMIP6 (DCPP; Boer et al., 2016). The starting years
are 1960 to 2018 (last simulated year is 2028).

In total, LAERTES-EU consists of 1183 simulation runs
(sample size) with approximately 12 500 simulated years.
The number of ensemble members for a specific year varies
from six at the beginning of the century to a maximum of
188 members between 1970 and 2000 (see Fig. S1 in the
Supplement). The simulations in all four data blocks are af-
fected by the observed external climate forcing, but they dif-
fer with respect to the representation of the observed climate
variability; whereas data block 1 uses assimilated 20CR data,
data blocks 2 and 4 contain initialized hindcasts, which to
some degree follow the observed low-frequency variability,
and data block 3 only uses the external forcing information.
Nonetheless, the four groups of downscaling simulations can
be grouped into a large ensemble, since the regional simula-
tions were all performed with the same setup of the RCM.
Despite the same initial conditions and model setup, the tem-
poral evolution of the day-to-day weather is (statistically) in-
dependent between the members after a few weeks. This is
an advantage, since the data set is homogeneous over time
but also covers uncertainties in the observations including
unknown and not-yet-observed events. The validity of this
combination approach is tested within Sect. 4.

Earth Syst. Dynam., 11, 469–490, 2020 https://doi.org/10.5194/esd-11-469-2020

http://www.ncep.noaa.gov/


F. Ehmele et al.: Heavy precipitation in central Europe 473

Table 1. Overview of the RCM ensemble LAERTES-EU with the name of the simulation within the MiKlip project, the classification into
data blocks, the underlaying setup (experiment), the covered time period, and the number of simulation years; XX stands for the ensemble
number and YYYY stands for the initialization year.

Name Block Experiment Period Years Comment

as20ncepXX 1 20CR via MPI-ESM-LR 1900–2009 330 3 members of 110 years each

decXXoYYYY 2 MPI-ESM-LR DROUGHTCLIP 1911–2019 3000 3 members with 100 decades each

historical_rXi1p1-HR 3 MPI-ESM-HR HISTORICAL 1900–2005 410
run 1–3 each with 106 years,
run 4–5 each with 46 years (1960–2005)

preop 4 MPI-ESM-HR CMIP5 1961–2026 2850 5 members with 57 decades each

dcppA-hindcast 4 MPI-ESM-HR CMIP6 1961–2028 5900 10 members with 59 decades each

3 Methods

The ability of LAERTES-EU to simulate realistic precipita-
tion amounts and distribution is an important requirement.
Moreover, temporal variability and possible trends should
also be well represented for trustworthy data sets. The meth-
ods were applied to different investigation areas and time pe-
riods. Equations and additional information can be found in
Appendix A–C. As the focus of this study is intensive areal
precipitation, we concentrate on high percentiles of spatially
aggregated daily rainfall totals, namely 99 %, and 99.9 %.
The percentiles are based on wet days only. First, a spatial
aggregation of daily precipitation values was applied. After-
wards, the percentiles of these areal precipitation were cal-
culated for each year separately. In all data sets, ocean grid
cells were set to a missing value and therefore neglected.

3.1 Validation methods

LAERTES-EU is analyzed and validated using various meth-
ods. The intensity spectrum gives the statistical probability
of each precipitation amount by taking into account all grid
points and all time steps within the investigation area and
without any aggregation. Therefore, the range of occurred
values is divided into evenly spaced histogram classes, which
then are normalized with the total sample size. The result-
ing intensity–probability curve (IPC) is a good indicator of
whether the model is capable to simulate realistic precipita-
tion intensity distributions.

As an extension to the IPCs, the linear error in probabil-
ity space L (cf. Eqs. A1–A3) is analyzed (e.g., Ward and
Folland, 1991; Potts et al., 1996). Therefore, empirical cu-
mulative density functions (ECDFs) are calculated for each
simulation run and for the observations. The data basis is the
same as for the IPCs. The value 1Cr (Eq. A1) is defined as
the difference between the ECDF of a model run r and that of
the observation (difference of probabilities) up to a specific
precipitation intensity. It is therefore a measure for the over-
or underestimation of the model. Using 1Cr, the linear error
in probability space (Lr; Eq. A2) is the mean of the absolute

values |1Cr| over the entire precipitation range as defined by
Déqué (2012) or Wahl et al. (2017). The better both density
functions coincide, the lower the value of Lr. According to
Eq. (A2), Lr is always positive. The ensemble mean is given
by L (Eq. A3).

The internal variability of LAERTES-EU on different time
intervals is compared to that of the observations. Given that
the focus of this study is on intensive widespread precipita-
tion, this analysis is performed using spatial mean precipita-
tion amounts averaged over the investigation areas. First, the
time series of daily spatial means are aggregated over differ-
ent intervals, namely monthly, seasonal, and yearly precipi-
tation sums, as well as 5-, 10-, or 30-year running means. In
a second step, the standard deviation of a gamma distribu-
tion σ0 is calculated for each of these interval series (see Ap-
pendix A; Eq. A4), for every single member of LAERTES-
EU, and for the observations. Finally, the ensemble mean of
the four data blocks and of the complete ensemble is built.
This method enables the analysis of how well the internal
variability on different timescales is captured by LAERTES-
EU.

The quantile–quantile (Q–Q) plot compares the simulated
distribution with the observed one using different percentiles
of daily spatial mean precipitation. The Q–Q distributions
are used to calculate the coefficient of determination R2 with
R being the Pearson correlation coefficient (Eq. A5).

The added value of the ensemble size is analyzed by us-
ing the signal-to-noise ratio (S2N) (Eq. A6). Therefore, we
determine a Gumbel distribution (cf. Appendix A) for dif-
ferent sample sizes and the corresponding 90 % confidence
interval. The S2N is then the ratio of the return value of the
Gumbel distribution divided by the 90 % confidence interval
(Früh et al., 2010).

3.2 Decadal variability and trend analysis

For the analysis of the temporal evolution of heavy precip-
itation, we use time series of different percentiles of spa-
tial mean precipitation and quantities introduced and recom-
mended by the Expert Team on Climate Change Detection
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474 F. Ehmele et al.: Heavy precipitation in central Europe

Figure 1. Topographic map of Europe at model resolution 0.22◦

(in meters above mean sea level; m a.m.s.l.) with the PRUDENCE
regions Mid-Europe (ME; dark red box) and the Alps (AL; gray
box), state borders (black contours), and the HYRAS area (light red
contour). Ocean grid cells are set to a missing value.

and Indices (ETCCDI; Karl et al., 1999; Peterson, 2005).
Currently, 27 indices for temperature and precipitation are
defined by the ETCCDI. These indices can be used from
local to global scales. Additionally, they combine extremes
with a mean climatological state (Zwiers et al., 2013). In
this study, we use the two indices (R95pTOT and R99pTOT;
Eqs. B1 and B2), which indicate the amount of precipitation
above the 95th or 99th percentile, respectively.

In terms of trend analysis, a Mann–Kendall test (Mann,
1945; Kendall, 1955) is performed with related significance
investigations (Appendix C). Regarding possible oscilla-
tions, the complete time series is split into subseries with
a minimum length of 10 years and up to 130 years (trend
matrix). The Mann–Kendall test is applied to each of these
subseries.

3.3 Investigation areas and time periods

The focus of this study is central Europe, implying the coun-
tries Germany, Switzerland, the Netherlands, Belgium, Lux-
embourg, and parts of France, Poland, Austria, the Czech
Republic, and Italy. Following Christensen and Christensen
(2007), these countries are mostly coincident with two of
the areas defined in the PRUDENCE (prediction of regional
scenarios and uncertainties for defining European climate
change risks and effects) project, namely the PRUDENCE
regions (PRs) Mid-Europe (ME) and the Alps (AL; Fig. 1).
Although these boxes contain both land and ocean, the latter
was set to a missing value and neglected. During validation,
ME and AL were reduced to the HYRAS grid cells lying
within the corresponding box, hereafter referred to as ME∗

and AL∗.

The data sets are investigated on different time peri-
ods (TPs): TP1 covers the past from 1900 to 2017, which
is divided into a subperiod (TP1b) only containing the pe-
riod 1951 to 2006, with both observations (E-OBS and
HYRAS) being available. TP2 is used for the predictions
from 2018 to 2028. Note that the simulations were performed
within the MiKlip project back in 2018 (using observations
until 2017), which is the reason why the prediction period
starts in 2018.

For climatological aspects, we use the time period
of 1961–1990, hereafter referred to as climTP. A couple of
studies (e.g., Cahill et al., 2015; Folland et al., 2018) showed
that the climate change signal for global mean temperature
significantly increased since the early 1980s. Therefore, us-
ing the time period of 1981–2010 as reference would possi-
bly include a strong changing signal to the analysis. Using
1961–1990 reduces the influence of these effects, as this pe-
riod shows more stable conditions to a certain degree. This
also permits more room for the interpretation of the future
predictions.

4 Validation of the RCM ensemble

In the following, the above-described methods are applied
in order to validate LAERTES-EU concerning its represen-
tativeness with observations. With this aim, data for the in-
vestigation period TP1b are used, and the boxes ME and AL
(cf. Fig. 1) are limited to the HYRAS area (ME∗ and AL∗).

4.1 Statistical distributions and frequencies

The IPCs give the range of simulated (observed) precipita-
tion intensities at any grid point within the investigation area
and its corresponding probability (Fig. 2). For both investi-
gation areas, the IPCs reveal a distinct added value of the
RCM compared to the global model. Due to the coarse res-
olution, intensities greater than approximately 100 mm d−1

are not found in the GCMs, which underestimate by a large
degree the probability of the high intensities. The same ap-
plies for the global reanalysis 20CR. On the other hand, the
RCM tends to overestimate the probability for precipitation
intensities above a threshold of approximately 50 mm d−1

but covers the entire range of values as the observations. The
wider range of intensities at the upper tail of the distribution
may include possibly not-yet-observed events.

For ME∗, the IPCs of the RCM are close to HYRAS, but
there is a systematic difference between HYRAS and E-OBS
(Fig. 2a). As already mentioned by Haylock et al. (2008),
E-OBS has a certain negative bias up to −30 % when using
grid-point-based quantities. The given deviation of HYRAS
and E-OBS is within this range. Similar results can be found
for AL∗ (Fig. 2b). The differences between the RCM simula-
tions and the observations at a given probability are slightly
less than those for ME∗. For both areas, the range of sim-
ulated values is much higher (up to 400 mm d−1). Naturally,
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Figure 2. Intensity–probability curves (IPCs) of daily rainfall totals of the RCM simulations (dry-day adjusted), observations (E-OBS and
HYRAS), GCM simulations (forcing MPI-ESM data at two resolutions – LR and HR), and global reanalysis data (20CR) for (a) Mid-
Europe (ME∗) and (b) the Alps (AL∗), both limited to the HYRAS area during the investigation period TP1b (1951–2006). For the IPCs,
every grid cell value at every time step was taken into account without any aggregation.

higher intensities are more likely in the mountainous AL∗ re-
gion.

In contrast to the grid-point-based IPCs, Fig. 3 shows
the mean standard deviation of a gamma distribution
(cf. Sect. 3.1 and Appendix A) for the time series of spa-
tial mean precipitation amounts aggregated over different
time intervals. For both areas, there is an expectable con-
tinuous decrease of internal variability towards longer peri-
ods for all data sets/data blocks. For ME∗, LAERTES-EU
is in good agreement with both observations at least up to
a yearly perspective. For longer time periods, data block 1
shows a slightly different behavior compared to the other
data blocks and observations. Nevertheless, data blocks 2–4
and the ensemble mean continue to match with the observa-
tions up to the 10-year running mean. Note that it is not pos-
sible to estimate the 30-year running mean for the decadal
simulations of data blocks 2 and 4 given the data availability.
For data block 3, only an external climate forcing was used,
meaning these so-called historicals are free runs in terms of
daily weather evolution. Therefore, it is not expected that the
multi-decadal variability is in phase to the observed circula-
tion after a certain time, which can be a reason for slightly
higher differences of data block 3 compared to the observa-
tions at the longest timescale. Furthermore, note that the re-
sults of Fig. 3 do not indicate a perfect match of LAERTES-
EU in terms of absolute values, but rather that the internal
variability (spread) of spatial mean precipitation totals is well
captured. For the mountainous AL∗ region, the internal vari-
ability is higher and all data blocks have a higher standard
deviation at all time intervals. This means that the spread
of simulated precipitation amounts is increased compared to
that of the observation. A possible reason for this difference
can emerge from sparse measurements in that region consid-
ered for both E-OBS and HYRAS, especially for long-term
observations. The more or less constant difference between

LAERTES-EU and the observations can be an indicator of a
possibly systematic bias in this region.

The Q–Q plots of daily spatial mean precipitation fields
for both investigation areas are shown in Fig. S2. Gener-
ally speaking, the distribution of the RCM is similar to those
of the observations, at least to E-OBS, with little deviations
from the optimum (diagonal line) for most of the spectrum
and differences at around 10 % for the upper part of the distri-
bution. In comparison to HYRAS, the maximum deviation is
higher at around 20 %. For AL∗, the differences between the
RCM and HYRAS are larger than for ME∗ (Fig. S2). Even
though HYRAS was aggregated to the E-OBS/RCM grid,
the more pronounced differences especially for the extremes
might be a result of the higher resolution of the HYRAS data,
which, in particular, is of greater relevance in the mountain-
ous region of AL∗.

The findings of Fig. S2 are confirmed by the determination
coefficients R2 (Table 2). For both E-OBS and HYRAS, the
coefficient is very high with R2 > 0.98. There is a slightly
higher R2 for E-OBS than for HYRAS, which is an artificial
effect of the data resolution. The region AL∗ shows a min-
imal higher skill compared to ME∗ in E-OBS and slightly
lower values in HYRAS. Table 2 also reveals higher correla-
tions of the CCLM simulations driven by the high-resolution
MPI-ESM-HR data compared to those driven by the lower-
resolved MPI-ESM-LR data. Even though this seems to be
systematic, the differences are marginal.

Table 2 also contains the mean linear error in probabil-
ity space L for the different data blocks. Again, the differ-
ences between the data blocks are marginal with all cases
being close to L= 0, which indicates good agreement of
LAERTES-EU with observations. In contrast to R2, L has
lower values for the simulations driven by MPI-ESM-LR.
For all data blocks, L is considerably higher for the moun-
tainous AL∗ region. Note that both quantities being close to
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Figure 3. Mean standard deviation σ0 in mm (mean over data blocks) of spatially averaged precipitation aggregated over different time
intervals: daily (day), monthly (month), seasonal (seas), yearly (years), and 5-/10-/30-year running mean (5 yr/10 yr/30 yr) for (a) ME∗ and
(b) AL∗ (TP1b; 1951–2006). The four data blocks of LAERTES-EU are considered separately; RCM mean stands for the complete ensemble
mean (gray). The results for E-OBS and HYRAS are given in black and magenta. Note that it is not possible to estimate the 30-year values
for the decadals of data blocks 2 and 4.

Table 2. Coefficients of determination R2 (top number) for the
quantile–quantile contemplation of Fig. S2 and linear error in prob-
ability space L (bottom number) between the RCM and both ob-
servations (E-OBS and HYRAS) for Mid-Europe (ME∗) and the
Alps (AL∗), always using HYRAS grid cells only. Both quantities
are based on daily spatial mean precipitation amounts.

RCM E-OB HYRAS

ME∗ AL∗ ME∗ AL∗

Data block 1
0.9914 0.9924 0.9876 0.9835
0.0016 0.0058 0.0027 0.0080

Data block 2
0.9914 0.9925 0.9878 0.9848
0.0009 0.0037 0.0021 0.0058

Data block 3
0.9963 0.9976 0.9936 0.9930
0.0017 0.0062 0.0029 0.0083

Data block 4
0.9966 0.9981 0.9943 0.9938
0.0011 0.0038 0.0023 0.0059

their optimum values does not indicate a perfect model. It
rather means that the overall statistics regarding the entire
range of intensities to a high degree coincide with the obser-
vations.

4.2 Time series

Besides overall statistics, other properties of LAERTES-EU
like the temporal variability should cover the range of ob-
servations as well. Therefore, we analyze the time series of
yearly values of different percentiles of the spatial mean pre-
cipitation for the investigation areas. In Fig. 4, the time se-
ries of the 99th percentile for ME∗ is shown. Both observa-

tional data sets have a high year-to-year variability with sim-
ilar shape. The ensemble mean value of LAERTES-EU is
higher, with a relative deviation of 1 %–10 % (TP1b average
is 7 %). The spread of both observational data sets is cov-
ered by the ensemble spread (minimum to maximum values)
of LAERTES-EU except for few extreme peaks (e.g., 1985).
In AL∗, the E-OBS mean is about 5 % higher than HYRAS
but both time series have again a similar shape (Fig. S3).
The ensemble mean again is higher with relative deviations
of 12 %–23 % (16 % on average) to E-OBS and 18 %–29 %
(21 % on average) to HYRAS. The ensemble spread also cov-
ers the observed variability.

Regarding more extreme values, namely the 99.9th per-
centile, similar results can be found (Figs. S4 and S5). Again,
E-OBS and HYRAS show a similar behavior for both areas
with mean value differences of less than 1 %. The ensem-
ble mean shows a mostly positive bias with deviations of less
than 10 % (6 % on average during TP1b) compared to E-OBS
for ME∗ and 6 %–18 % (average of 10 %) for AL∗. Further-
more, there is a distinctly higher spread and variability of the
99.9 % for both the observations and LAERTES-EU. Except
for a few peaks, LAERTES-EU covers the spread of the ob-
servations.

4.3 Added value of the sample size

In order to demonstrate the added value of the presented
LAERTES-EU, we use the S2N (Eq. A6) for different sam-
ple sizes and return periods (cf. Appendix A). Sample size, in
this case, means the number of simulation runs. Note that the
simulations vary in length (number of years) with a minimum
length of 10 years and a maximum of 110 years. In order to
reduce the influence of the sample length on the results, the
single simulation runs of LAERTES-EU were randomly con-
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Figure 4. Time series of the yearly 99th percentile (wet days and
HYRAS area only) of daily spatial mean precipitation values for
Mid-Europe (ME∗) during TP1b (1951–2006) of the LAERTES-
EU ensemble mean (black), the ensemble spread (minimum to max-
imum; gray), E-OBS (red), and HYRAS (blue). The dotted lines
symbolize the mean values of the observations throughout TP1b.

catenated using a 100-fold permutation. Observations have
a sample size of 1. Again, S2N is calculated for daily spa-
tial mean precipitation amounts during TP1b only using the
HYRAS area.

For both ME∗ and AL∗, S2N steadily increases with sam-
ple size for all calculated return values, indicating a more
statistically robust estimate of the return values (Fig. 5). Fur-
thermore, the S2N is lower for higher return periods which is
a result of the increasing uncertainty of the best estimate due
to fewer or even no data points for very high return periods.
However, S2N also increases with sample size for the very
high return periods. The robustness of a 2-year return value
estimate of a sample of size 1 is about the same as the 1000-
year estimate for a sample of size 20. This means that even
for extremes, which have not been observed yet, some robust
statistical analysis can be carried out.

5 Long-term variability and trends

The temporal evolution and variability of extreme precipita-
tion throughout the past time period (TP1; 1900–2017) and
also for the predictions (TP2; 2018–2028) are evaluated in
this section. Besides time series of percentiles, we use cli-
mate change indices and statistical distributions. In this sec-
tion, all land grid cells within the investigation areas ME and
AL are used for calculating the daily areal mean precipitation
amounts.

5.1 Precipitation distributions

Figure 6 shows the evolution of the distribution of areal
mean precipitation throughout TP1 and TP2 by treating
each decade independently. For the core of the distributions,

Figure 5. S2N ratio for different return periods T (colored lines)
of daily spatial mean precipitation dependent on the sample size for
(a) ME∗ and (b) AL∗. The LAERTES-EU members were randomly
stringed together permuting the order a hundred times. The shown
S2N is the mean of this permutation.

namely medians, interquartile ranges, and upper whiskers,
only small variance can be found between the different
decades, which means that there is almost no change for
the majority of the precipitation amounts. Nevertheless, a
marked positive trend for the uppermost extremes of the dis-
tributions appears with maximum values around 18 mm d−1

at the beginning of the 20th century and about 24 mm d−1

in the 21st century. The distribution for the upcoming
decade (2020–2028) shows only small differences to that of
the present decade (since 2010), with an almost equal median
and interquartile range but slightly higher maximum values
(Fig. 6, green boxplot). Note that the decade of 2010–2019
contains the years 2018 and 2019 from the predictions, and
that the last “decade” 2020–2028 is shorter with 9 years.

The boxplot for AL is shown in Fig. S6 and illustrates that
not only the high percentiles reveal a decrease in the mid-
dle of the century, but the entire distribution is shifted to-
wards lower values. Nevertheless, there is no clear tendency
for the maximum values. For the upcoming decade, the dis-
tribution is similar to that of the present decade in the case
of the median and the upper part of the distribution (Fig. S6,
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Figure 6. Boxplot of the distribution of daily spatial mean precipi-
tation values (including dry days) for ME. Each decade was consid-
ered separately. The centerline of a box marks the median; the lower
and upper ends of the box mark the 25th and 75th percentiles (in-
terquartile range); the whiskers represent approximately the 99.9th
percentile; the prediction part is marked in green.

green boxplot). The interquartile range is reduced due to a
increased lower boundary of the boxplot.

5.2 Temporal evolution of yearly percentiles

5.2.1 Overview

The overall trend during TP1 and TP2 using a linear regres-
sion for both areas and percentiles is given in Table 3. While
the ensemble mean shows a significant positive trend for ME
for both percentiles, a small but significant negative trend can
be found for the 99th percentile of AL, while there is almost
no change in the 99.9th percentile of AL. In all cases, the
ensemble spread increases due to both a decrease of the min-
imum values and an increase of the maximum values both
being highly significant. The change of the maximums is
stronger than the reduction of the minimums and more pro-
nounced in AL than in ME.

Analogous to Table 3, we analyze the trend for TP1b only
(Table S1 in the Supplement). The tendencies are the same
for all cases but less pronounced, except for the mean 99.9 %
of AL where the negative trend during TP1b is slightly
stronger than for the whole time series.

Figure 7 shows the temporal evolution of the 99th per-
centile during the 20th and the beginning of the 21st century
for the whole LAERTES-EU. As given in Table 3, the lower
boundary changes are small, while there is a visible positive
trend of the ensemble mean and the upper boundary of the
ensemble spread. Note that the larger spread from the 1960s
onwards might be artificial due to the decisively larger num-
ber of members of data block 4. Nevertheless, there is a clear
consistency in the time series for ME.

Table 3. Overall trend of daily spatial mean precipitation during
TP1 and TP2 (1900–2028) using a linear regression of the yearly
series of the 99th and 99.9th percentile (Pct; wet days only) for ME
and AL. Given are absolute values and the relative changes (RCs)
compared to the climatological mean (climTP; 1961–1990) for the
ensemble minimum (min), the ensemble mean, and the ensemble
maximum (max) percentile values within LAERTES-EU, and the
related significance (p value; α = 0.05).

Area Pct Variable Trend RC climTP pα
(mm) (%) (mm)

min −0.4 −4.6 7.8 0.9387
ME 99 mean 0.8 7.8 10.3 1.0000

max 2.6 19.0 13.9 1.0000

min −1.0 −10.9 9.0 0.9974
ME 99.9 mean 1.1 8.4 13.5 1.0000

max 6.7 31.0 21.6 1.0000

min −2.6 −17.1 15.4 1.0000
AL 99 mean 0.1 0.4 21.0 0.7208

max 5.4 18.9 28.4 1.0000

min −4.3 −23.9 17.8 1.0000
AL 99.9 mean −0.0 −0.0 27.3 0.0000

max 9.0 20.0 44.7 1.0000

Figure 7. Time series of the yearly 99th percentile of daily spatial
mean precipitation (wet days only) for Mid-Europe (ME; land only)
of the LAERTES-EU ensemble mean (solid line), and the ensem-
ble spread (minimum to maximum; dots and shaded area) during
TP1 (1900–2017; black/gray) and TP2 (2018–2028; reddish).

Some differences emerge for AL (Fig. S7). At first, there
is a distinct decrease of the ensemble mean between 1960
and 1970, which might be revealed from the rising number
of members. As the ensemble matches well with the obser-
vations, we presume an overestimation of precipitation in the
first half of the 20th century in that region, which could be
a result of missing data for the applied dry-day correction.
Due to the more complex terrain, the structure of the precip-
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Table 4. Climatological mean (climTP; 1961–1990) of days per
year exceeding the 99th and 99.9th percentiles (Pct; wet days only)
for ME and AL, linear regression (LR) and relative change (RC)
compared to climTP for different TPs, and related significance
(p value; α = 0.05).

Area Pct climTP TP LR RC pα

ME 99 3.20 1+ 2 1.25 39 % 1.0000
1b 0.76 24 % 1.0000

99.9 0.60 1+ 2 0.36 60 % 1.0000
1b 0.19 32 % 1.0000

AL 99 3.11 1+ 2 −0.17 −6 % 0.8262
1b −0.37 −12 % 0.9251

99.9 0.62 1+ 2 −0.02 −2 % 0.7084
1b −0.04 −6 % 0.2973

itation fields is more complex and therefore more sensitive
for different types of effects such as the dry-day correction.

The results for the 99.9th percentile are similar for both
areas (Figs. S8 and S9). The positive trend for ME is even
more pronounced, while the drop in the 1960s for AL is less
visible, and therefore the time series is more constant.

For ME, the evolution of the number of days exceeding
the climatological mean percentile reveals a strong positive
and significant trend for both the 99th (Fig. 8, top) and 99.9th
percentile (Fig. S10). The exact values of the climTP mean,
the linear regression, the relative change, and the significance
can be found in Table 4 (top numbers). For AL, the year-to-
year variability is higher and the overall trend is slightly neg-
ative (Figs. 8, bottom, and S11) and at least significant for the
99th percentile. Again, we analyze the trend for TP1b sepa-
rately (Table 4, bottom numbers). The tendencies for TP1b
are the same but less pronounced except for the days exceed-
ing the 99th percentile in AL, where there is a stronger trend
signal in TP1b compared to the whole time series, which is
also significant to a high degree.

5.2.2 Past trends and periodic oscillations

For a more detailed analysis of trends, the Mann–Kendall
test described in Sect. 3.2 is applied to the time series of
daily spatial mean precipitation percentiles. Figure 9a shows
the relative number of LAERTES-EU members that show
a positive or negative trend of the 99th percentile for ME.
Only cases in which more than 60 % of the complete ensem-
ble members reveal the same tendency are then considered
for further investigation. For these cases, the ensemble mean
trend is calculated (Fig. 9b) and the relative amount of signif-
icant members is displayed (Fig. 9c). All cases in which the
ensemble reveals ambiguous tendencies are neglected (gray
areas).

To a high degree, the single members show the same be-
havior, especially for the longer time series where positive
trends are dominant. On a decadal timescale (diagonal line

Figure 8. Deviation of the LAERTES-EU ensemble mean of
the yearly number of days above the 99th percentile (wet days
only) of daily spatial mean precipitation compared to the clima-
tology (climTP; 1961–1990) for (a) Mid-Europe (ME) and (b) the
Alps (AL). Red bars indicate negative anomalies (less days);
blue bars indicate positive anomalies (more days). The predictions
(TP2; 2018–2028) are given in green. The black line indicates a lin-
ear regression.

in Fig. 9), some oscillations appear with phases of increasing
and decreasing precipitation. This signal might be smoothed,
as it is not expected that the decadal simulations of data
blocks 2 and 4 cover the natural variability at this timescale in
detail. Furthermore, these simulations are not expected to be
in phase with the long-lasting simulations of data blocks 1
and 3. The trends on this timescale reach rates of up to
0.1 mm a−1 or 1 mm per decade, respectively. The overall
trend is weaker with a rate of 0–0.02 mm a−1 or 0–2 mm per
century, respectively. Positive trends are more often signif-
icant than the negative, while only a small part of the en-
semble shows significant trends. Similar results can be found
for AL (Fig. S12). The trends on the decadal timescale reach
higher rates but the oscillation is less pronounced than in ME.
Again, most of the positive trends are significant, while just
a few members with negative trends are significant.
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Figure 9. Trend analysis of the 99th percentile (wet days only) of daily spatial mean precipitation for ME with (a) the relative amount of
members of LAERTES-EU with a positive (blue) or negative (red) trend; (b) the trend in millimeters per year averaged over the members
from panel (a), and (c) relative amount of members from panel (a) with a significant trend; cases with no distinct number (less than 60 %) of
members with same trend sign are marked in gray in panels (a)–(c).

For the 99.9th percentile of ME, large parts of LAERTES-
EU show positive trends (Fig. S13). On the decadal
timescale, a clear sequence of positive and negative trends
is visible. Both the increases and decreases are more pro-
nounced than for the 99th percentile but only a few members
are significant. For AL, even more parts of the ensemble have
the same tendency of heavy precipitation and a higher num-
ber of members have a significant trend (Fig. S14). These
trends exceed rates of decisively more than ±0.1 mm a−1. In
contrast to the results above, the 99.9th percentile for AL
seems to have a multidecadal oscillation, while the overall
trend of the complete time series is negative.

5.2.3 Future predictions

With respect to the upcoming decade (TP2; 2018–2028),
LAERTES-EU predicts a continuation of the current trend
with an increase especially for the 99.9th percentile (Figs. 7
and S6–S8; reddish area). In comparison to the last
decade (2007–2017), the RCM mean of the 99th percentile
increases of about 0.6 % for ME and about 2.1 % for AL. The
99.9th percentile increases about 2.0 % for ME and 3.0 %
for AL.

Further to this absolute change, the number of days ex-
ceeding the climatological 99th percentile shows an increase
of 4.9 % for ME and 8.4 % for AL, and 6.7 % (ME) and
22.4 % (AL) in the case of the 99.9 % compared to the mean
of 2007–2017. This also manifests in the relative anomaly
(Figs. 8 and S10–S11; green bars).

Nevertheless, a more detailed trend analysis illustrated in
Fig. 9 and also Figs. S12–S14 reveals that LAERTES-EU
shows no clear tendency for the 99 % during TP2. Just in
a few cases, more than 60 % of the members have a simi-
lar mainly positive trend signal, which, however, is not sig-
nificant. In the case of the 99.9th percentile, 60 %–70 %
of the members show a strong positive trend of more than
0.1 mm a−1 with 20 %–40 % of them being significant. Al-
though the tendency for TP2 is ambiguous and less signifi-
cant, it shows continuity to the present decade.

5.3 Climate change indices

The results described in the previous sections also manifest
in the considered ETCCDI climate change indices (Table 5).
R95pTOT shows a positive trend for ME (Fig. 10a) with a
relative change of about 18 % and a strong negative trend of
approximately −15 % for AL (Fig. S15). Remarkably, there
is a high positive deviation in the first half of the 20th cen-
tury compared to the climTP amount for AL which might be
artificial due to the mentioned problems of the dry-day cor-
rection. R99pTOT shows a positive change for ME (Fig. 10b)
and a slightly negative trend for AL (Fig. S16). The overes-
timation for AL in the early century is less pronounced for
this index. Considering only the TP1b, the tendencies are
the same in all cases. The positive trends for ME are less
pronounced, while the negative trends for AL are stronger.
The estimated trends are highly significant, except for the
R99pTOT of AL for the whole time series.
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Figure 10. Relative deviation of (a) the R95pTOT index and (b) the R99pTOT index of the LAERTES-EU ensemble mean of daily spatial
mean precipitation (wet days and land only) compared to the climatology (climTP; 1961–1990; Table 5) for Mid-Europe (ME). Red bars
indicate negative (dry) anomalies; blue bars indicate positive (wet) anomalies. The predictions (TP2; 2018–2028) are given in green. The
black line indicates a linear regression.

Table 5. Climatological mean (climTP; 1961–1990) of ETCCDI
quantities for Mid-Europe (ME) and the Alps (AL), linear regres-
sion (LR) and relative change (RC) compared to climTP for differ-
ent TPs, and related significance (p value; α = 0.05). Both indices
are based on wet days only of daily spatial mean precipitation (land
only).

Area ETCCDI climTP TP LR RC pα
(mm) (mm) (%)

ME R95pTOT 157.5 1+ 2 28.4 18 1.0
1b 20.1 13 1.0

R99pTOT 43.8 1+ 2 15.6 36 1.0
1b 12.2 28 1.0

AL R95pTOT 306.7 1+ 2 −46.3 −15 1.0
1b −54.3 −18 1.0

R99pTOT 88.5 1+ 2 −4.5 −5 0.8953
1b −10.8 −12 0.9891

Compared to the present decade, the predictions show a
continuation of the positive trend for ME with an increase of
2 % for R95pTOT and 5 % for R99pTOT. In contrast, both
indices show a positive trend for AL with an increase of 7 %
for R95pTOT and 8 % for R99pTOT, which is a complete
reversal of the overall trend.

6 Summary and conclusions

We have presented the novel LAERTES-EU ensemble com-
bining various regional climate model simulations done with
COSMO-CLM to analyze long-term variability and trends of
flood-related intensive areal precipitation across central Eu-
rope. The whole RCM ensemble was divided into four data
blocks depending on forcing data, assimilation schemes, or
the initialization of the driving global model MPI-ESM. The

setup of the COSMO model remained the same for all simu-
lations. In total, the presented LAERTES-EU consists of over
1100 simulation runs with approximately 12 500 simulated
years on a 25 km horizontal resolution.

The focus of investigation was laid on the PRUDENCE re-
gions Mid-Europe (ME) and the Alps (AL). Regarding inten-
sive areal precipitation, we concentrated on high percentiles,
namely 99 % and 99.9 %, of spatially averaged daily precipi-
tation amounts. Note that it was not expected that LAERTES-
EU was able to reproduce historical precipitation events on a
daily base in detail but have a more accurate performance re-
garding long-term variations and statistical distributions on a
larger scale perspective. Furthermore, the given resolution re-
stricts the consideration of convective processes, so we con-
centrated on larger-scale phenomena.

With respect to our initial research questions, the follow-
ing main conclusions can be drawn and summed up out of
the presented results, which will be discussed in more detail
afterwards:

1. LAERTES-EU is capable of representing the range of
extreme areal precipitation similar to the used observa-
tional data sets and also fits into the range of previous
studies (e.g., Früh et al., 2010). The four data blocks are
consistent and have similar precipitation distributions.
The ensemble also covers the observed temporal evolu-
tion.

2. The benefits of the large ensemble size manifest in a
strong increase of the signal-to-noise ratio beyond the
typically used ensemble sizes and in high statistical sig-
nificance of estimated trends for the ensemble mean.
Furthermore, the distribution of precipitation totals is
represented in a more concise way, taking the limita-
tions of the considered observations into account.
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3. Long-term trends reveal spatial differences in sign and
strength. These tendencies are partly significant. De-
spite a quite large ensemble spread, the ensemble mean
shows more explicit results. Distinct oscillations can
also be found on shorter timescales (e.g., decades).

4. The predictions for the upcoming decade show a con-
tinuation of past tendencies in terms of both intensity
and occurrence frequency for ME without any discon-
tinuity to the previous time period. On the other hand,
LAERTES-EU shows no clear signal for AL.

Regarding the validation (1), grid-point-based IPCs, areal
mean precipitation distributions (internal variability σ0 and
linear error in probability space L), and Q–Q distributions
have been analyzed. In all cases, the IPCs of the simula-
tions show an overestimation of precipitation on the order
of 10 %–20 % compared to E-OBS. Haylock et al. (2008)
found that E-OBS can have a certain negative bias of up
to 30 % compared to single ground-based punctual obser-
vations. Taking this into account, the IPCs are almost coin-
cident. Furthermore, the IPCs of LAERTES-EU show only
small deviation compared to the HYRAS data set (aggre-
gated to the model grid). The IPCs and also the Q–Q dis-
tributions of all four data blocks are coincident, which was
a prerequisite for the combination to one large ensemble.
The Q–Q distributions of spatially aggregated mean precip-
itation reveal fewer differences between LAERTES-EU and
E-OBS, but an underestimation of simulated rainfall com-
pared to HYRAS by about 10 %. The linear error in probabil-
ity space L shows a good agreement of LAERTES-EU with
observations in terms of the distribution of daily areal mean
precipitation totals. For different aggregation intervals from
daily values up to 10-year running means, the internal vari-
ability (standard deviation σ0) of LAERTES-EU matches to
a high degree with that of both observations. Note that both
quantities L and σ0 do not indicate whether the simulated
absolute precipitation values coincide with the observations
but rather show the agreement of statistical properties.

Regarding (2), LAERTES-EU reveals a clear added value
due to the large sample size. Estimates of long return peri-
ods are more robust compared to smaller ensembles which
is of importance, for instance, for risk and insurance appli-
cations. Furthermore, trends at least in the ensemble mean
are highly significant. The IPCs also show a benefit of RCM
data compared to the coarser global model (MPI-ESM) or
the 20CR global reanalysis. Regarding extremes, LAERTES-
EU includes a broader range of precipitation totals with even
higher values, which are not covered by observations due to
their limited temporal availability. Although the presented re-
sults reveal a broad range of realizations within LAERTES-
EU, the statistics of the ensemble mean clearly benefit from
the large ensemble size with a better signal-to-noise ratio.

Besides a proper representation of precipitation, long-term
trends and temporal variations were of special interest. Re-
garding (3), the presented results show a reasonable agree-

ment of LAERTES-EU concerning the temporal evolution of
the considered percentiles of spatially aggregated daily pre-
cipitation totals for the different investigation areas. The en-
semble spread (minimum to maximum) covers the observed
variability except a few peaks. The ensemble mean shows
a small positive bias compared to both observational data
sets. Throughout the complete time period of TP1 (1900–
2017), positive and significant trends can be found for ME
in both percentiles (99 % and 99.9 %) and also in the num-
ber of days exceeding the climatological mean (1961–1990).
For AL, there is no clear trend signal in the ensemble mean
but an increase in the maximum values. In contrast, the num-
ber of days exceeding the climatological mean percentiles
is decreasing in this area. Comparing the trends of TP1 to
the shorter TP1b (1951–2006), the tendencies are the same
but less pronounced in TP1b. On a decadal timescale, some
oscillations can be found with periods of increasing precipi-
tation and such with decreasing values. Similar results as for
time series of percentiles can be found using climate change
indices (ETCCDI).

Regarding (4), the predictions for the next decade (2018–
2028; TP2) reveal ongoing tendencies of heavy precipita-
tion indices. A special case is AL where the slightly nega-
tive trends in the past (TP1) turn to positive ones. Both the
continuity for ME and the reversal for AL appear in all time
series, namely the number of days of threshold exceedance,
ETCCDI variables, and investigated percentiles. While there
is a clear signal and high significance for the ensemble mean,
the trends were ambiguous and less significant when the en-
semble members were considered separately. However, we
conclude that this tendency is likely, as it is a continuation of
the results of the present decade. Similar results for parts of
LAERTES-EU were found by Reyers et al. (2019).

Precipitation remains a challenging task for both reanal-
yses and climate model simulations of the past and the fu-
ture with partly contrasting results shown by several previous
studies. Furthermore, long-term comprehensive observations
are not available, which makes a validation difficult due to
the high spatial variability of precipitation. This also affects
analyses of trends or climate variability. What is known is a
theoretical increase of the water vapor capacity according to
the Clausius–Clapeyron (CC) equation of about 6 %–7 % per
degree of temperature increase (e.g., Trenberth et al., 2003;
Berg et al., 2009), which assumes a near-constant relative hu-
midity. The CC rate is generally thought to be a proxy for fu-
ture precipitation projections (Westra et al., 2013). A recent
discussion about the validity of the CC rate as an estimate
for future projections of heavy precipitation can be found in
Zhang et al. (2017). They pointed out that besides the ther-
modynamic responses, changes in heavy precipitation may
be also influenced by dynamical effects. Furthermore, Pfahl
et al. (2017) and Kröner et al. (2017) showed that precip-
itation trends can be regionally influenced by contributions
from both lapse-rate and circulation effects.
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The ensemble mean of LAERTES-EU shows an increase
of about 1.9 ◦C for ME and 2.3 ◦C for AL for the yearly
mean 2 m temperature of spatial means during the 20th cen-
tury (TP1; 1900–2017). Including the predictions (TP2), the
increase is about 2.4 ◦C for ME and 2.8 ◦C for AL. For in-
stance, Simmons et al. (2017) found an increase over Eu-
ropean land masses of approximately 2 ◦C in the mean com-
pared to pre-industrial conditions. Moberg et al. (2006) found
an increase of about 1 ◦C for temperature extremes. Thus,
LAERTES-EU is within the range of observed changes. The
increase in temperature over the entire time period is equiv-
alent to a CC scaling of about 15 %–20 %. The extracted
changes of the high precipitation percentiles for ME make
up to 50 % compared to the theoretical CC value. However,
the negative tendencies for AL do not fit into this theoretical
estimate.

The presented LAERTES-EU data set can be used for
various applications fields. In particular, the simulations are
used as input for hydrological modeling and further applica-
tions such as flood risk assessments. The presented ensemble
in this case can be used as a stochastic weather generator
treating the single simulations independently. This leads to
the production of a quasi-stochastic hydrological discharge
data set. Due to the large ensemble size, estimates of high
return periods become more robust. However, it has to be
mentioned that the composition of the four data blocks to
one ensemble restricts the temporal homogeneity. Moreover,
the validation showed a positive bias of the ensemble mean
which, together with the overestimation of low intensities, re-
quires a bias correction to avoid unrealistic discharges. This
application as well as the bias correction of LAERTES-EU
will be addressed in a consecutive study.

In this study, we have focused on all-year variance, os-
cillations, or trends. Future investigations can address a sea-
sonal differentiated analysis of trends and oscillations as well
as a more detailed investigation of the spatial distribution of
these findings and potential mechanisms behind the observed
variability. Previous studies indicated that there is a strong
relation between precipitation in Europe and the North At-
lantic Oscillation (NAO), especially during wintertime (e.g.,
Hurrell, 1995; Rîmbu et al., 2002; Haylock and Goodess,
2004; Nissen et al., 2010; Pinto and Raible, 2012). More-
over, Casanueva et al. (2014) found a connection between
extreme precipitation and the Atlantic Multidecadal Oscilla-
tion (AMO) during the whole year.
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Appendix A: Statistical quantities

The linear error in probability space L uses the difference of
probabilities 1C defined as

1Cr(x)= ecdfmod,r(x)− ecdfobs(x), (A1)

where ecdfmod,r is the empirical cumulative density function
of the model run r , and ecdfobs that of the observation up
to precipitation intensity x. The linear error in probability
space Lr for a model run r is then defined as (Déqué, 2012;
Wahl et al., 2017)

Lr =
1
n
·

n∑
x=1
|1Cr(x)|. (A2)

Lr describes the mean value of 1Cr over the entire range of
precipitation intensities x grouped into n classes. Using ab-
solute values avoids a compensation of positive and negative
values. The better both distributions coincide, the lower the
value of Lr. The ensemble mean of Lr is given by

L=
1
M

M∑
r=1

Lr, (A3)

with M being the total number of simulation runs.
The model performance on different frequency intervals

is further validated using the standard deviation of a gamma
distribution σ0 (Wilks, 2006), which is given by

σ 2
0 = αβ

2. (A4)

In this formulation, α is the shape parameter of the gamma
distribution, and β its scale parameter.

The quantile–quantile analysis uses the Pearson correla-
tion coefficient (Wilks, 2006) given by

R =

N∑
k=1

{[
yk − yk

]
· [xk − xk]

}
√

N∑
k=1

[xk − xk]2
·

√
N∑
k=1

[
yk − yk

]2 , (A5)

with the data series x and y of length N . The range of R is
R ∈ [−1; +1] with a perfect anti-correlation at R =−1 and
a perfect correlation at R =+1.

The S2N ratio in this study is defined as

S2N=
RVT ,Gumbel

CI90,T
, (A6)

with the return level RV of the Gumbel distribution at re-
turn period T divided by its 90 % confidence interval at T
(Früh et al., 2010). Small values of S2N indicate a more un-
certain estimate; high values indicate a more robust one. The
Gumbel distribution (Wilks, 2006) is an extreme value type-I

distribution and often used for return period estimation. Its
cumulative density function (cdf) is given by

F (x)= exp
(
−exp

(
−
x−β

α

))
, (A7)

with the free parameters β = σ
√

6 ·π−1 and α = x− γβ,
where σ is the standard deviation of the sample x assum-
ing a normal distribution, and γ = 0.57721 Euler’s constant.
For x, usually a series of yearly maximum values is used.
The relationship between the cdf and the return period T is
given by (Wilks, 2006)

T =
1

1−F (x)
. (A8)

Appendix B: ETCCDI quantities

Two out of the 27 indices introduced and recommended by
the Expert Team on Climate Change Detection and Indices4

(ETCCDI; Karl et al., 1999; Peterson, 2005) are used in
this study. R95pTOT describes the annual total precipitation
sum of all values above the climatological 95th percentile of
wet days (RR> 1 mm) during the reference period of 1961–
1990. The R95pTOT of the year k is defined as

R95pTOTk =
W∑
w=1

RRwk∀RRwk > RRp95, (B1)

where RRwk is the daily precipitation amount on a wet day
during year k, RRp95 is the climatological 95th percentile,
andW is the total number of wet days in year k. Analogously,
the R99pTOT is defined by replacing the 95th with the 99th
percentile:

R99pTOTk =
W∑
w=1

RRwk∀RRwk > RRp99. (B2)

Appendix C: Trends and significance

A Mann–Kendall test (Mann, 1945; Kendall, 1955) is per-
formed for the detection of trends and its related signifi-
cance. To account for possible oscillations within long time
series, we first split the complete time series into subseries
with a minimum length of 10 years and up to over 100 years
(trend matrix). The Mann–Kendall test uses a standard-
ized test statistic Sτ following a standard Gaussian distribu-
tion (SGD). Sτ is given by

Sτ =


τ−1√
σ 2
τ

, τ > 0,

0, τ = 0,
τ+1√
σ 2
τ

, τ < 0.
(C1)

4http://etccdi.pacificclimate.org/ (last access: 20 May 2020).
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Here, τ is known as the Kendall τ and σ 2
τ is the variance of

the SGD. A detected trend is significant if Sτ lies within the
upper and lower quantiles z of the SGD at a given signifi-
cance level α with Sτ ∈

[
z α

2
στ ; z1− α2

στ

]
, respectively (Yue

et al., 2002).
Yue et al. (2002) pointed out some weaknesses of the

Mann–Kendall test in the case of inherent autocorrelation.
To avoid a distortion of the statistic by autocorrelation, Yue
et al. (2002) presented the trend-free pre-whitening (TFPW)
method. The first step is the estimation of a linear trend be-
tween two time steps (t = i and t = j ) using the Theil–Sen
approach (TSA; Theil, 1950; Sen, 1968). The slope b of this
linear regression is given by

b =median
(
xj − xi

j − i

)
, ∀i < j. (C2)

In a second step, the original time series x is detrended by
subtracting b at each time step t :

x′t = xt − b · t. (C3)

Afterwards, the lag-1 autocorrelation coefficient r1 is re-
moved from the trend-free series x′:

x′′t = x
′
t − r1 · x

′

t−1, (C4)

where r1 is given by

r1 =

1
N−1 ·

N−1∑
i=1

(
x′i − x

′

)
·

(
x′i+1− x

′

)
1
N
·

N∑
i=1

(
x′i − x

′

)2
. (C5)

The modified TFPW time series x∗ results by re-adding the
TSA slope b:

x∗t = x
′′
t + b · t. (C6)

This modified time series conserves the trend but is free of
autocorrelation. The Mann–Kendall test is performed on the
TFPW time series x∗. According to Yue et al. (2002), TFPW
has to be considered in cases with non-zero TSA slope and
significant lag-1 autocorrelation. The significance of a trend
or autocorrelation is tested on the 90 % (α = 0.1), 95 % (α =
0.05), and 99 % (α = 0.01) significance levels.
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