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Abstract. In 2015, El Niño contributed to severe droughts in equatorial Asia (EA). The severe droughts en-
hanced fire activity in the dry season (June–November), leading to massive fire emissions of CO2 and aerosols.
Based on large event attribution ensembles of the MIROC5 atmospheric global climate model, we suggest that
historical anthropogenic warming increased the chances of meteorological droughts exceeding the 2015 obser-
vations in the EA area. We also investigate changes in drought in future climate simulations, in which prescribed
sea surface temperature data have the same spatial patterns as the 2015 El Niño with long-term warming trends.
Large probability increases of stronger droughts than the 2015 event are projected when events like the 2015 El
Niño occur in the 1.5 and 2.0 ◦C warmed climate ensembles according to the Paris Agreement goals. Further
drying is projected in the 3.0 ◦C ensemble according to the current mitigation policies of nations.

We use observation-based empirical functions to estimate burned area, fire CO2 emissions and fine (<2.5 µm)
particulate matter (PM2.5) emissions from these simulations of precipitation. There are no significant increases
in the chances of burned area and CO2 and PM2.5 emissions exceeding the 2015 observations due to past anthro-
pogenic climate change. In contrast, even if the 1.5 and 2.0 ◦C goals are achieved, there are significant increases
in the burned area and CO2 and PM2.5 emissions. If global warming reaches 3.0 ◦C, as is expected from the
current mitigation policies of nations, the chances of burned areas and CO2 and PM2.5 emissions exceeding the
2015 observed values become approximately 100 %, at least in the single model ensembles.

We also compare changes in fire CO2 emissions due to climate change and the land-use CO2 emission scenar-
ios of five shared socioeconomic pathways, where the effects of climate change on fire are not considered. There
are two main implications. First, in a national policy context, future EA climate policy will need to consider
these climate change effects regarding both mitigation and adaptation aspects. Second is the consideration of fire
increases changing global CO2 emissions and mitigation strategies, which suggests that future climate change
mitigation studies should consider these factors.
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1 Introduction

El Niño events, often characterised by their positive sea sur-
face temperature (SST) anomalies in the central and east-
ern tropical Pacific Ocean, accompany a weakening of the
Walker circulation in the equatorial Pacific region. In the
equatorial Asia region (EA, the area denoted in Fig. 1g), the
weakening of the Walker circulation due to major El Niño
events corresponds to downward motion anomalies and less
convection (negative precipitation anomalies) (Santoso et al.,
2017). The 2015/2016 major El Niño event (the strongest
since 1997/1998) induced negative precipitation anomalies
and enhanced the severe drought in the EA region during
the dry season (June–November) of 2015 (Field et al., 2016;
Liu et al., 2017; Santoso et al., 2017). Parts of the EA re-
gion are tropical peatlands that contain tremendous amounts
of soil organic carbon (Page et al., 2011) and huge biomass
(Baccini et al., 2012, 2017; Saatchi et al., 2011). Coupled
with anthropogenic land-use change (e.g. expansion of oil
palm plantations on peatlands), the severe drought increased
fire activity in forests and peatlands, leading to large eco-
nomic losses (at least USD 16.1 billion for Indonesia) and
significant impacts on ecology and human health (Taufik et
al., 2017; World Bank, 2016; Hartmann et al., 2018). The
fires enhanced the emissions of CO2 and aerosols (Yin et al.,
2016; Field et al., 2016; Koplitz et al., 2016; Stockwell et al.,
2016; Liu et al., 2017). The fire carbon emissions of 2015
were the largest since the 1997 El Niño event (Yin et al.,
2016). The estimated 2015 CO2-equivalent biomass burning
emissions for all Indonesia (1.5 billion metric tons of CO2)
were between the 2013 annual fossil fuel CO2 emissions of
Japan and India (Field et al., 2016). The massive emissions
of ozone precursors and aerosols, including fine (<2.5 µm)
particulate matter (PM2.5), caused severe haze across much
of EA (Field et al., 2016), resulting in the excess deaths of
approximately 100 300 people (Koplitz et al., 2016).

In a previous study (Lestari et al., 2014), we suggested that
recent fire events in Sumatra were exacerbated by human-
induced drying trends based on analyses of two sets of his-
torical simulations of the MIROC5 atmospheric global cli-
mate model (AGCM) (Watanabe et al., 2010) with and with-
out anthropogenic warming. Lestari et al. (2014) and Yin
et al. (2016) projected future increases in the frequency
of droughts and fires based on analyses of the coupled
atmosphere–ocean global climate model (AOGCM) ensem-
bles of the Coupled Model Intercomparison Project Phase 5
(CMIP5) (Taylor et al., 2012).

Although Lestari et al. (2014) showed the anthropogenic
effects on the historical trends in droughts, it is not clear
how historical climate change affected the particular drought
event of 2015. Because extreme events can occur by natu-
ral variability alone, it is difficult in principle to attribute a
particular event to anthropogenic climate change. However,
comparisons of observations and large ensemble simulations
can help us evaluate the degree to which human influence has

affected the probability of a particular event (Allen, 2003).
Such an approach is called probabilistic event attribution
(PEA) (Pall et al., 2011; Shiogama et al., 2013). In the PEA
approach, two sets of large ensembles (e.g. 100 members)
are generally performed. The first is historical simulations of
an AGCM driven by the historical values of anthropogenic
(e.g. greenhouse gases) and natural forcing (solar and vol-
canic activities) agents and by the observed SST and sea
ice concentration (SIC). The second is counterfactual natu-
ral runs driven by pre-industrial anthropogenic and historical
natural forcing agents and by the observed values of SST and
SIC cooled according to estimates of anthropogenic warming
(Stone et al., 2019) (see Sect. 3 for more details). Note that
the components of interannual variations in the SST data are
not modified in the natural forcing ensemble. Therefore, for
example, we can assess how anthropogenic warming affected
the probabilities of drought events exceeding the observed
value in the 2015 major El Niño event by comparing the dis-
tributions of members in historical and natural forcing en-
sembles. In this study, based on the PEA approach, we exam-
ine whether historical climate change increased not only the
probabilities of drought but also those of fire and fire emis-
sions of CO2 and PM2.5 during the June–November dry sea-
son of 2015. The lower computing costs of AGCM compared
to AOGCM enable us to perform large ensembles, which are
necessary for PEA. We use the 100-member PEA ensembles
of MIROC5 (Shiogama et al., 2014) that have been used for
many attribution studies on single extreme events (e.g. Sh-
iogama et al., 2014; Kim et al., 2018; Hirota et al., 2018).

Although Lestari et al. (2014) and Yin et al. (2016) showed
increases in droughts and fires in the future transient projec-
tion ensembles of AOGCMs, it is not clear how future an-
thropogenic warming affects droughts and fire when events
like the 2015 El Niño occur in a future warmer climate. It is
also important to investigate changes in extreme events at 1.5
and 2.0 ◦C warming levels to inform stakeholders, since the
Paris Agreement set the 1.5 ◦C and 2 ◦C long-term climate
stabilisation goals (United Nations Framework Convention
on Climate Change, 2015). In this study, we examine how
the probabilities of drought, fire and fire emissions of CO2
and PM2.5 would change when major El Niño events like
2015 occur in 1.5 and 2.0 ◦C warmed climates. We analyse
large (100-member) ensembles of the MIROC5 AGCM un-
der the Half a degree Additional warming, Prognosis and
Projected Impacts (HAPPI) project, which was initiated in
response to the Paris Agreement (Mitchell et al., 2016, 2017,
2018; Shiogama et al., 2019). These MIROC5 HAPPI en-
sembles have been used, for example, to study the changes
in extremely hot days (Wehner et al., 2018), extreme heat-
related mortality (Mitchell et al., 2018), tropical rainy season
length (Saeed et al., 2018) and global drought (Liu et al.,
2018) at 1.5 and 2.0 ◦C global warming. There is a signifi-
cant “emissions gap”, which is the gap between where we are
likely to be and where we need to be (United Nations Envi-
ronment Programme, 2018). The current mitigation policies
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of nations would lead to global warming of approximately
3.2 ◦C (with a range of 2.9–3.4 ◦C) by 2100 (United Nations
Environment Programme, 2018). Therefore, it is worthwhile
to compare changes in extreme events and impacts in cases
where the 1.5 and 2.0 ◦C goals are achieved and where they
are not. Therefore, we perform and analyse a large ensemble
of a 3.0 ◦C warmed climate.

By using the above ensembles, we answer the following
questions:

a. Has historical climate change significantly affected the
probabilities of drought, fire and fire emissions of CO2
and PM2.5?

b. How do the probabilities of drought, fire and fire emis-
sions in 2015-like major El Niño years change if we
can limit global warming to 1.5 and 2.0 ◦C? Adaptation
investments are necessary to reduce the associated im-
pacts.

c. If we overshoot the 1.5 and 2.0 ◦C goals to the current
trajectory of 3.0 ◦C, how will drought, fire and fire emis-
sions be altered? A comparison of the results for 1.5/2.0
and 3.0 ◦C indicates the potential benefits of mitigation
efforts to achieve the goals of the Paris Agreement.

Although conversions of forest and peatlands to agricul-
ture and plantations of oil palm are also important factors for
fire activity (Marlier et al., 2013, 2015; Kim et al., 2015), we
do not examine the effects of land-use change in this study.
In Sects. 2 and 3, we describe the empirical functions and
model simulations used in this study, respectively. In Sect. 4,
we examine changes in precipitation, fire and fire emissions.
Finally, Sect. 5 contains the conclusions.

2 Empirical functions

Figure 1a–c indicate the observed June–November 2015
mean anomalies in surface air temperature (1T ), vertical
pressure velocity at the 500 hPa level (1ω500) and precipita-
tion (1P ) relative to the 1979–2016 averages. ERA-Interim
reanalysis (ERA-I) data (Dee et al., 2011) are used for
1T and 1ω500. Global Precipitation Climatology Project
(GPCP) data (Adler et al., 2003) are analysed for 1P . The
largely positive 1T over the eastern tropical Pacific Ocean
(i.e. El Niño) is related to substantial downward motion
anomalies (weakening of Walker circulation) and negative
precipitation anomalies over the EA region (the area shown
in Fig. 1g). The negative precipitation anomalies in June–
November 2015 were the third largest since 1979 (the first
and second largest anomalies are the 1997 and 1982 El Niño
events).

In the EA region, the negative precipitation anomalies are
associated with the enhanced fire fraction, fire CO2 emis-
sions and fire PM2.5 emissions estimated from the Global
Fire Emissions Database (GFED4s) (van der Werf et al.,

2017) (Fig. 1d–f). By combining satellite information on
fire activity and vegetation productivity, GFED4s provides
monthly burned area, fire CO2 and dry matter (DM) emis-
sions data. We can also compute aerosol emissions by mul-
tiplying DM by the provided factors. The CO2 and PM2.5
emissions increase linearly as the burned areas expand (Sup-
plement Fig. S1). Previous studies found that fire activity and
related emissions have non-linear relationships with precip-
itation anomalies and accumulated water deficits (Lestari et
al., 2014; Spessa, et al., 2015; Yin et al., 2016; Field et al.,
2016). Figure 2 shows the empirical relationships between
the EA-averaged precipitation anomalies (GPCP) and the EA
cumulative burned area and fire CO2 and PM2.5 emissions
(GFED4s) between 1997 and 2016. Here, we remove the
1979–2016 average from precipitation and divide the anoma-
lies by their standard deviation value. As precipitation de-
creases, the burned area, fire CO2 and PM2.5 emissions in-
crease exponentially. We estimate the fitting curves (solid
curves in Fig. 2) by using the following equation:

ln(y)= a+ b1P, (1)

where y is the burned area, CO2 emissions or PM2.5 emis-
sions, and a and b are the intercept and regression coeffi-
cients, respectively. The coefficients of determination (R2)
are higher than 0.7. We also estimate the 10 %–90 % confi-
dence intervals of the fitting curves by applying a 1000-time
random sampling of the observed data: we randomly resam-
ple 20-year samples from the original 20-year (1997–2016)
data and compute a and b; we repeat the random resampling
process 1000 times; we consider that the 10th percentile and
90th percentile values of the 1000 regression lines indicate
the 10 %–90 % confidence intervals. These non-linear rela-
tionships are consistent with previous studies (Lestari et al.,
2014; Spessa, et al., 2015; Yin et al., 2016; Field et al., 2016).
We use the relationships in Fig. 2a–c as empirical functions
to estimate burned area and fire emissions from the AGCM
simulations of precipitation in Sect. 4.

3 Model simulations

The MIROC5 AGCM (Watanabe et al., 2010) has a
160 km horizontal resolution. We perform 10-member long-
term (1979–2016) historical simulations (Hist-long) of the
MIROC5 AGCM forced by the observed sea surface tem-
perature (SST) (HadISST, Rayner et al., 2003) and anthro-
pogenic and natural external forcing factors (Shiogama et al.,
2013, 2014). Here, the observed 1P and 1ω500 are divided
by their standard deviation values. The 1P and 1ω500 of
each ensemble member are also divided by their own stan-
dard deviation values. The correlations of the 1979–2016
time series of 1P and 1ω500 between the observations and
the ensemble averages of the MIROC5 simulations are 0.90
and 0.87, respectively (Fig. 3a–b). When we apply the above
normalisation process as a simple bias correction technique,
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Figure 1. The observed climate conditions and fires. The June–November 2015 averaged anomalies of (a) surface air temperature (◦C)
and (b) vertical pressure velocity at the 500 hPa level (Pa s−1, downward motions are positive) from ERA Interim reanalysis data (Dee et
al., 2011) relative to the 1979–2016 mean. (c) The June–November 2015 averaged anomalies of precipitation from GPCP (Adler et al.,
2003) (mm d−1). The right panels indicate (d) fire fraction (%), (e) fire CO2 emissions (g m−2 month−1) and (f) fire PM2.5 emissions from
GFED4s (van der Werf et al., 2017) between June and November 2015. (g) The red area indicates the EA region of the GFED4s. We use this
definition of the EA area. Shading shows the land area ratio (no unit) used for weighting in the computation of EA averages.

Figure 2. Empirical relationships between observed precipitation
anomalies, burned area and fire emissions in the EA area between
1997 and 2016. The horizontal axes are the normalised June–
November mean precipitation anomalies (no unit) of the GPCP.
The vertical axes denote (a) burned area (km2), (b) CO2 emissions
(TgCO2) and (c) PM2.5 emissions (t) of GFED4s. The year 2015
values are indicated by red squares. Solid and dashed lines indicate
the best estimates and the 10 %–90 % confidence intervals of the
fitting curves from Eq. (1), respectively.

it is found that the MIROC5 model has good hindcast skill
regarding interannual variability in the EA-averaged 1P

and 1ω500. The precipitation and vertical motion anoma-
lies are closely related to the Niño 3.4 SST (an index of
El Niño–Southern Oscillation) in the observations (correla-
tions are −0.89 and 0.76, respectively) (Fig. 3c–d). There

is also a high correlation value between 1P and 1ω500
(−0.87) (Fig. 3e). We show that El Niño (La Niña) accom-
panies descending wind (ascending wind) in the EA area
(Fig. 3d), leading to negative (positive) 1P (Fig. 3e and c).
The MIROC5 model represents well these relationships be-
tween Niño 3.4, 1P and 1ω500 in the observations (Fig. 3c–
e); i.e. the regression lines of MIROC5 in Fig. 3c–e are close
to those in the observations.

To investigate whether historical anthropogenic climate
change affected the precipitation anomalies during the 2015
El Niño event, we analyse the outputs of two large ensem-
bles, one with factual historical forcing (Hist) and one with
counterfactual natural forcing (Nat) of MIROC5 for June–
November 2015 (Shiogama et al., 2013, 2014). These simu-
lations are called probabilistic event attribution experiments,
and they contribute to the international Climate and Ocean:
Variability, Predictability and Change (CLIVAR) C20C+
Detection and Attribution project (Stone et al., 2019). The
Hist ensemble is forced by historical anthropogenic and nat-
ural external forcing factors and also observational data of
SST and sea ice (HadISST, Rayner et al., 2003). The Nat
ensemble is forced by historical natural forcing factors and
hypothetical “natural” SST and sea ice patterns where long-
term anthropogenic signals were removed. Anthropogenic
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Figure 3. Evaluations of the MIROC5 simulations of the EA-
averaged precipitation and vertical air motions. Panels (a) and (b)
show the normalised June–November mean time series of (a) 1P

(no unit) and (b) 1ω500 (no unit). Red lines are the observations.
Light blue lines are the 10 ensemble members of Hist-long, and blue
lines are the ensemble mean. The other panels are scatter plots of
(c) 1P and the Niño 3.4 index (◦C), (d) 1ω500 and the Niño 3.4 in-
dex, and (e) 1P and 1ω500. Red diamonds are the observed values.
Small light-blue crosses are the 10 ensemble members of Hist-long,
and large blue diamonds indicate the ensemble mean values. The
red and blue lines indicate the regression lines of the observations
and the ensemble averages of Hist-long, respectively.

SST changes were estimated by taking the ensemble mean
differences between the all-forcing historical runs and the
natural-forcing historical runs of the CMIP5 AOGCMs. The
multimodel averaged anthropogenic signal was subtracted
from the HadISST data, and the Nat sea ice was estimated
by using an empirical function that computes observed sea
ice concentrations from surface temperature (Stone et al.,
2019). Please note that both the Hist and Nat ensembles have
2015 El Niño components in the spatial patterns of SST, but
the prescribed long-term warming anomalies in SST are dif-
ferent from each other. We performed 100-member runs of
the 2006–2016 period for both Hist and Nat. Please see Sh-
iogama et al. (2013, 2014) and Stone et al. (2019) for details
regarding the experimental design.

We also analyse the 100-member ensembles of 11-year
simulations with 1.5 and 2.0 ◦C warming relative to pre-
industrial levels. We performed those experiments as a con-

tribution to the HAPPI project (Mitchell et al., 2016, 2017,
2018; Shiogama et al., 2019). Since the ensemble-averaged
global warming of the CMIP5 Representative Concentration
Pathway 2.6 (RCP2.6) experiments is 1.55 ◦C, for the 1.5 ◦C
runs, we used the RCP2.6 anthropogenic forcing agents (e.g.
greenhouse gases) in 2095 and the ensemble mean 2091–
2100 averaged SST anomalies of the RCP2.6 runs of the
CMIP5 AOGCMs. The SST anomalies (Supplement Fig. S2,
top panel) are changes in the CMIP5 multimodel mean SST
for each month, between the decadal average of 2091–2100
RCP2.6 and the decadal average of 2006–2015 RCP8.5. We
added those SST anomalies to the 2006–2016 observed SST
data of HadISST. To estimate the sea ice concentration, we
applied a linear sea ice–SST relationship estimated from ob-
servations (Supplement Figs. S3–S4) (Mitchell et al., 2017).
For the 2.0 ◦C runs, we used the weighted sum of RCP2.6
and RCP4.5 (0.41×RCP2.6+ 0.59×RCP4.5) of the well-
mixed greenhouse gas concentrations in 2095 and the ensem-
ble mean 2091–2100 averaged SST anomalies of the CMIP5
AOGCM ensembles (Supplement Fig. S2, middle panel) be-
cause the weighted sum of the global mean temperature
change values of the ensemble-averaged CMIP5 RCP2.6 and
RCP4.5 runs is 2.0 ◦C. Please see Mitchell et al. (2017) for
details regarding the experimental design. Notably, these fu-
ture simulations have the same components as the 2015 El
Niño event in terms of the spatial patterns of SST, but the
prescribed long-term warming anomalies in SST have been
added. Therefore, we can investigate drought events when
events like the 2015 El Niño occur in 1.5 and 2.0 ◦C warmed
climates relative to pre-industrial levels.

Furthermore, we run the 100-member 3.0 ◦C ensemble
(10-year simulations based on the 2006–2015 HadISST data)
as an extension of the HAPPI project. Following the origi-
nal HAPPI methodology, we add SST and sea ice concen-
tration anomalies that represent additional warming in a 3 ◦C
warmer world compared to pre-industrial values. The SST
anomalies (Supplement Fig. S2, bottom panel) are changes
in the CMIP5 multimodel mean SST for the decadal aver-
age of 2006–2015 in RCP8.5 and the decadal average of
2091–2100 in a combined scenario of RCP4.5 and RCP8.5,
i.e. 0.686×RCP4.5+0.314×RCP8.5 (Lo et al., 2019). The
CMIP5 multimodel global mean temperature in 2091–2100
is approximately 3 ◦C warmer than the 1861–1880 mean in
this combined scenario; hence, this scenario describes 3 ◦C
global warming above pre-industrial levels. For the sea ice
concentration anomalies, we find the coefficients of this lin-
ear relationship from pre-existing 1.5 and 2 ◦C SST and sea
ice anomalies. We apply this relationship to the 3 ◦C SST
anomalies to estimate the sea ice concentration anomalies,
which are then added to the observed 2006–2015 data (see
Mitchell et al., 2017). Supplement Figs. S3–S4 show the sea
ice concentrations in both hemispheres in the 1.5, 2 and 3 ◦C
experiments. The same weightings for RCP4.5 and RCP8.5
in the combined scenario equivalent to 3 ◦C warming are also
applied to greenhouse gas concentrations. This study is the
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Figure 4. Surface air temperature warming patterns in 2015. (a)
1T differences between 3.0 ◦C and Nat (◦C). The 30◦ S–30◦ N
ocean averaged value is subtracted. The black box indicates the
Niño 3.4 region. The other panels are the same as panel (a) but for
(b) 2.0 ◦C and Nat, (c) 1.5 ◦C and Nat and (d) Hist and Nat.

first to report results from the HAPPI extension (i.e. the 3 ◦C
runs) using MIROC5.

To compute the normalised values of EA-averaged 1P

and 1ω500 of the Hist, Nat, 1.5, 2.0 and 3.0 ◦C runs, we
subtract a long-term mean value of a given single member
of Hist-long and divide anomalies by the standard devia-
tion value of that Hist-long member. This normalisation pro-
cess enables us to produce 100× 10= 1000 samples of nor-
malised 1P and 1ω500 data for each of the Hist, Nat, 1.5,
2.0 and 3.0 ◦C ensembles.

4 Changes in precipitation, burned area and fire
emissions of CO2 and PM2.5

The difference patterns of surface air temperature (≈ pre-
scribed SST difference patterns over the ocean) in Hist–
Nat and 1.5 ◦C–Nat, 2.0 ◦C–Nat and 3.0 ◦C–Nat have greater
warming in the Niño 3.4 region than the tropical (30◦ S–
30◦ N) ocean average values (Fig. 4). The relatively higher
warming in the Niño 3.4 region accompanies downward mo-
tion anomalies in the EA region (Fig. 5a), enhancing negative
precipitation anomalies when an El Niño occurs (Fig. 5b).
Notably, the prescribed SST difference between the Niño 3.4
region and the tropical ocean mean is larger in the 1.5 ◦C runs
than in the 2.0 ◦C runs. As a result, the amplitude of negative
precipitation in the 1.5 ◦C runs is slightly greater than that in
the 2.0 ◦C runs, as mentioned below, at least in these ensem-
bles. It is not clear why the ensemble average of the CMIP5
RCP2.6 runs (i.e. the prescribed SST anomalies of the 1.5 ◦C
runs) has a larger SST difference between the Niño 3.4 re-
gion and the tropical ocean mean than that of the weighted
sum of RCP2.6 and RCP4.5 (the 2.0 ◦C runs).

The 10-member ensembles of Lestari et al. (2014) were
too small to estimate probabilities of droughts. Our large
ensemble simulations enable us to estimate the probabil-
ities of drought exceeding the observed value. Historical
anthropogenic climate change has significantly increased
the chance of 1P being more negative than the observed
value from 2 % (1 %–4 %) in Nat to 9 % (6 %–14 %) in
Hist (Fig. 6a). Here, we use the cumulative histograms of
100× 10= 1000 samples of 1P to estimate the probabil-

Figure 5. Relationships between Niño 3.4 warming and EA verti-
cal motion and precipitation anomalies of the ensemble mean. The
horizonal axes show differences in the 2015 T anomalies between
the Niño 3.4 area and the 30◦ S–30◦ N ocean (◦C). The vertical axes
are (a) 1ω500 (no unit) and (b) 1P (no unit) for the year 2015.
Crosses denote the ensemble averages of Nat (purple), Hist (black),
1.5 ◦C (light blue), 2.0 ◦C (green) and 3.0 ◦C (red).

ities of 1P . The values in parentheses indicate the 10 %–
90 % confidence interval estimated by applying the 1000-
time resampling: we randomly resample 100× 10 data from
the original 100×10 samples of 1P and compute the proba-
bilities of drought exceeding the 2015 observed value; we re-
peat the random resampling process 1000 times and consider
the 10th percentile and 90th percentile values of the 1000
estimates of probability as the 10 %–90 % bounds. Even if
the 1.5 and 2.0 ◦C goals of the Paris Agreement are achieved
(in the 1.5 and 2.0 ◦C runs), the chance of exceeding the ob-
served value significantly increases from 9 % (6 %–14 %) in
Hist to 82 % (76 %–87 %) and 67 % (60 %–74 %), respec-
tively. In the current trajectory of 3.0 ◦C warming (in the
3.0 ◦C runs), the chance of exceeding the observed value be-
comes 93 % (89 %–96 %).

By combining the 1P of MIROC5 (Fig. 6a) and the em-
pirical relationships in Fig. 2, we assess the historical and
future changes in burned areas and fire emissions of CO2
and PM2.5 (Fig. 6b–d). We consider uncertainties by com-
bining randomly resampled 1P and resampled regression
factors of Eq. (1): (i) we compute the regression factors of
Eq. (1) using randomly resampled data (the same as the pro-
cess used to estimate the uncertainty ranges of the regres-
sion lines); (ii) we randomly resample 100× 10 data from
the original 100× 10 samples of 1P ; (iii) we use the re-
gression factors of (i) and the 100× 10 1P samples of (ii)
to compute the 1000 estimates of fire or emissions and esti-
mate the probability of exceeding the observed values; (iv)
the processes of (i)–(iii) are repeated 1000 times; and (v) the
10th percentile and 90th percentile values of the 1000 esti-
mates of the probabilities of exceeding the observed values
are considered to be the 10 %–90 % bounds. Historical an-
thropogenic drying has increased the probability of exceed-
ing the observed values of the burned area (from 5 % (0 %–
18 %) to 23 % (3 %–52 %)), CO2 emissions (from 5 % (0 %–
15 %) to 23 % (3 %–47 %)), and PM2.5 emissions (from 2 %
(0 %–5 %) to 24 % (3 %–49 %)), but these changes are not
statistically significant due to the large uncertainties. In the
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Figure 6. Changes in the cumulative probability functions. (a) The
vertical axis indicates the probability (%) of 1P being lower than a
given horizontal value (no unit). Solid lines denote the 50 % values
of the 1000 random samples of the Nat (purple), Hist (black), 1.5 ◦C
(light blue), 2.0 ◦C (green) and 3.0 ◦C (red) ensembles. The verti-
cal dotted line is the observed 2015 value. The other panels show
the probabilities of exceeding the given horizontal values for (b)
the burned area (km2), (c) CO2 emissions (TgCO2) and (d) PM2.5
emissions (t).

1.5, 2.0 and 3.0 ◦C runs, the chances of exceeding the ob-
served values significantly increase for the burned area (93 %
(66 %–99 %), 81 % (50 %–95 %), and 98 % (84 %–100 %),
respectively); for CO2 emissions (92 % (72 %–98 %), 81 %
(55 %–93 %), and 98 % (86 %–100 %), respectively); and for
PM2.5 emissions (93 % (70 %–98 %), 81 % (54 %–94 %), and
98 % (85 %–100 %), respectively).

We contextualise the estimated fire CO2 emissions within
the future emissions scenarios. Although the above analy-
ses focus on the year when the 2015-like El Niño events
occurred, long-term mean fire CO2 emissions are also im-
portant for mitigation policies. Here, we use the simulated
June–November mean precipitation anomalies of 11 years
(2006–2016), instead of using only the 2015 data, and the
empirical function of Fig. 2b to estimate the cumulative prob-
ability function of fire CO2 emissions in the EA area in the
2.0 ◦C runs (Fig. 7). The fire CO2 emissions of the 11-year
period including both El Niño and non-El Niño years (Fig. 7)
are much less than those in the year 2015 with the major El
Niño (Fig. 6c) due to low fire CO2 emissions in the non-
El Niño years (Fig. 2). However, these fire CO2 emissions
can have substantial implications for mitigation policies. The
vertical lines in Fig. 7 are land-use CO2 emission scenar-
ios for the year 2100 including fire emissions for the east
and south-east Asia regions except China and Japan in the
five shared socioeconomic pathway (SSP) scenarios from the
Asia–Pacific Integrated Model/Computable General Equilib-
rium (AIM/CGE) (Fujimori et al., 2012). AIM/CGE is one

Figure 7. The red curves are the cumulative probability function of
CO2 emissions (TgCO2 yr−1) in June–November of 2006–2016 for
the 2.0 ◦C runs. Solid and dashed lines denote the 50 % values and
the 10 %–90 % confidence intervals, respectively. The vertical lines
indicate annual land-use CO2 emission scenarios for the year 2100
(including fire emissions of CO2) for the east and south-east Asia
regions, except China and Japan, for the five SSP baseline scenarios
of the AIM/CGE model.

of the integrated assessment models (economic models) that
produced the emissions data of SSP scenarios for the Cou-
pled Model Intercomparison Project Phase 6 and the sixth
assessment report of the Intergovernmental Panel on Climate
Change (Riahi et al., 2017; Fujimori et al., 2017). Please
note that land-use CO2 emissions for the year 2100 are not
linearly related to the SSP numbers because the SSP num-
bers did not indicate radiative forcing levels. The chances
of exceeding the emissions of SSP1, 2, 3, 4 and 5 are 77 %
(70 %–84 %), 34 % (28 %–39 %), 13 % (10 %–18 %), 37 %
(31 %–41 %), and 77 % (70 %–84 %), respectively. Although
these probability values highly depend on the SSP scenarios,
the results are substantial in all the SSP scenarios. Because
the CO2 emissions in the AIM/CGE model include a wider
area and emission sources other than the EA fire emissions
of CO2, this comparison is conservative. In the SSP simu-
lations of AIM/CGE, fire CO2 emissions are computed by
using functions of land-cover changes, and climate change
effects on fires are not considered. Therefore, it is suggested
that implementing climate change effects on fire CO2 emis-
sions in integrated assessment models can significantly affect
SSP land-use CO2 emissions and studies on mitigation path-
ways, which in turn would be highly relevant to national and
global climate policies. We suggest that additional fire CO2
emissions due to climate change should be considered in pos-
sible CMIP7 activities.

5 Conclusions

By applying the probabilistic event attribution approach
based on the MIROC5 AGCM ensembles, we suggested
that historical anthropogenic warming significantly increased
the chances of severe meteorological drought exceeding the
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2015 observations in the EA area during the 2015 major
El Niño event (from 2 % (1 %–4 %) in Nat to 9 % (6 %–
14 %) in Hist). By performing and analysing the HAPPI (1.5
and 2.0 ◦C warming) and HAPPI extension (3.0 ◦C warm-
ing) runs, we showed that the probabilities of drought ex-
ceeding the 2015 observations will largely increase: 82 %
(76 %–87 %), 67 % (60 %–74 %), and 93 % (89 %–96 %), re-
spectively.

Drying trends tend to exacerbate fire activity. By com-
bining these experiments and the empirical functions, we
also implied that historical anthropogenic drying had tended
to increase the chances of the burned area, CO2 emissions
and PM2.5 emissions exceeding the 2015 observations, but
those changes were not statistically significant. In contrast,
if the 2.0 ◦C goal is achieved, the chances of exceeding the
observed values will substantially increase for the burned
area from 23 % (3 %–52 %) in Hist to 81 % (50 %–95 %)
for 2.0 ◦C, CO2 emissions from 23 % (3 %–47 %) to 81 %
(55 %–93 %), and PM2.5 emissions from 24 % (3 %–49 %)
to 81 % (54 %–94 %). These results agree well with Lestari
et al. (2014) and Yin et al. (2016), who showed that the
AOGCM ensemble of CMIP5 projected future long-term
trends of drying and enhanced fire CO2 emissions. We fur-
ther suggest that the risks of drought and fire significantly
increase when events like the 2015 El Niño occur in fu-
ture warmer climates even if the 1.5 and 2.0 ◦C goals are
achieved. The impacts of these changes on droughts, burned
areas and fire emissions should be reduced by adaptation in-
vestments.

If we cannot limit global warming to 2.0 ◦C and it reaches
3.0 ◦C as expected from the current emissions gap (United
Nations Environment Programme, 2018), the chances of ex-
ceeding the observed values further increase for the burned
area, CO2 emissions and PM2.5 emissions. Although the dif-
ferences between 2.0 and 3.0 ◦C are not statistically signifi-
cant for the burned area and the CO2 and PM2.5 emissions,
the 50th percentile values of probabilities exceeding the 2015
observations first reach approximately 100 % in the 3.0 ◦C
runs. These additional changes relative to 2.0 ◦C indicate
the effects of the failures of mitigation policies. Conversely,
these changes indicate the potential benefits of limiting the
current trajectory of 3 ◦C global warming to the Paris Agree-
ment goals.

Forest-based climate mitigation has a key role in meeting
the goals of the Paris Agreement (Grassi et al., 2017). We
also suggested that changes in fire CO2 emissions due to fu-
ture warming can increase the need for modifying fire CO2
emission scenarios for future climate projections. Although
we focused on the influences of climate change on burned
area and fire emissions, land-use and land-cover changes are
also important factors. To avoid fire intensification due to
drying climates, effective land management policies for pro-
tecting forests and peatlands are necessary (Marlier et al.,
2015; Kim et al., 2015; Koplitz et al., 2016; World Bank,
2016).

This study is based on the single model ensembles using
particular SST anomaly patterns. A future work to compare
multimodel simulations using multiple estimates of warming
patterns in SST would be useful.
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