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Abstract. Observational constraints on the equilibrium climate sensitivity have been generated in a variety of
ways, but a number of results have been calculated which appear to be based on somewhat informal heuristics.
In this paper we demonstrate that many of these estimates can be reinterpreted within the standard subjective
Bayesian framework in which a prior over the uncertain parameters is updated through a likelihood arising from
observational evidence. We consider cases drawn from paleoclimate research, analyses of the historical warming
record, and feedback analysis based on the regression of annual radiation balance observations for tempera-
ture. In each of these cases, the prior which was (under this new interpretation) implicitly used exhibits some
unconventional and possibly undesirable properties. We present alternative calculations which use the same ob-
servational information to update a range of explicitly presented priors. Our calculations suggest that heuristic
methods often generate reasonable results in that they agree fairly well with the explicitly Bayesian approach us-
ing a reasonable prior. However, we also find some significant differences and argue that the explicitly Bayesian
approach is preferred, as it both clarifies the role of the prior and allows researchers to transparently test the
sensitivity of their results to it.

1 Introduction

While numerous explicitly Bayesian analyses of the equilib-
rium climate sensitivity have been presented (e.g. Tol and
De Vos, 1998; Olson et al., 2012; Aldrin et al., 2012), many
results have also been generated which appear to be based
on more heuristic methods. In this paper we examine sev-
eral such estimates and demonstrate how they can be rein-
terpreted in the context of the subjective Bayesian frame-
work, revealing in each case an underlying prior which can
be deemed to have been implicitly used. That is to say, we
present an explicitly Bayesian analysis which takes the same
observational data together with the same assumptions and
model underlying the data-generating process, which (when
used to update this implicit prior) precisely replicates the
published result. In some cases these implicit priors exhibit
rather unconventional properties, and we argue that they are
unlikely to have been chosen deliberately and would proba-

bly not have been used if the authors had presented a trans-
parently Bayesian analysis. We rerun some of these analyses
in a standard Bayesian framework using the same observa-
tional evidence to update a range of explicitly stated priors.
While in many cases these results are broadly similar to the
existing published results, some differences will be apparent.

The paper is organised as follows. In Sect. 2 we intro-
duce some concepts in Bayesian analysis which underpin our
presentation. In Sect. 3, we explore several calculations in
which researchers have estimated the climate sensitivity via
direct calculation based on observationally derived probabil-
ity density functions, considering paleoclimate research (An-
nan and Hargreaves, 2006; Köhler et al., 2010; Rohling et al.,
2012), the observational record of warming over the 20th
century warming (Gregory et al., 2002; Mauritsen and Pin-
cus, 2017), and analyses of interannual variability (Forster
and Gregory, 2006; Dessler and Forster, 2018) in turn. We
present a Bayesian interpretation of these calculations and
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give some alternate analyses based on alternative, explicitly
stated, priors. We argue that this latter approach is preferred,
as it both clarifies the role of the prior and allows researchers
to transparently test the sensitivity of their results to it. We
conclude with a general discussion about our results.

2 Principles and methods

2.1 Confidence intervals, Bayesian probability, and the
“confusion of the inverse”

Let us assume we have a measuring process that produces an
observational estimate xo of an unknown (but assumed con-
stant) parameter which takes the value xT, with an observa-
tional error ε that can be considered to take a specified error
distribution, typically an unbiased Gaussian:

xo = xT+ ε, (1)

where ε ∼N (0,σ ). For simplicity, we assume here that σ is
known. This “measurement model” is fundamental to anal-
ysis of observations in many scientific domains. For exam-
ple, in climate science, analyses of observed global temper-
ature anomalies are commonly generated and presented in
this form. We emphasise that the error term in this equation
need not be defined solely in terms of a simple instrumen-
tal or sampling error but may include any and all sources of
discrepancy between the numerical value generated from an
observational analysis and the measurand that the researcher
is interested in. Some examples will be discussed later when
we present applications of our methodology. All that we re-
quire in order to use this equation is to assume that the uncer-
tainty inherent in the generation of the observational estimate
is independent of the true value which is being estimated and
that we have a statistical model for it (such as Gaussian).

Following on from this measurement model, there is a sim-
ple syllogism (i.e. a logical argument) that seems common
in many areas of scientific research, which runs as follows:
since we know a priori that p(−2σ < ε < 2σ )' 95 %, we
can also write a posteriori that p(xo−2σ < xT < xo+2σ )'
95 % once xo is known. For example, if σ = 0.25 is given and
we observe the value xo = 74.60, then the researcher may
assert that there is a ∼ 95 % probability that xT lies in the
interval (74.10, 75.10) or simply present a full probability
density: the probability distribution function (PDF) of xT is
N (xo,σ )=N (74.60, 0.25).

This syllogism is intuitively appealing but incorrect. It
appears to arise from the misinterpretation of frequentist
confidence intervals as being Bayesian credible intervals.
We should note that calculating and presenting the interval
xo± 2σ as a frequentist 95 % confidence interval would be
a valid procedure. That is to say, if we were to repeatedly
take a new observation xo according to Eq. (1), with each ob-
servation having an independent observational error of stan-
dard deviation 0.25, and generate the corresponding inter-
val (xo− 0.5, xo+ 0.5) then approximately 95 % of the in-

tervals so generated would include the true value xT. How-
ever, frequentist confidence intervals are not the same thing
as Bayesian credible intervals. The latter interpretation for an
interval refers to a degree of belief that the particular interval
that has been generated on a specific occasion does in fact
include the parameter. Climate scientists are far from unique
in this misinterpretation, which appears to be widespread
throughout the scientific community (Hoekstra et al., 2014).
Because this misunderstanding is so deeply embedded in sci-
entific practice and discourse, we now discuss and explain it
in some detail.

We start by noting that probabilistic statements concerning
the true value xT demand the use of the Bayesian paradigm
wherein the language and mathematics of probability may be
applied to events that are not intrinsically random, but about
which our knowledge is uncertain (Bernardo and Smith,
1994). The parameter xT itself does not have a probability
distribution here; it was assumed to take a fixed value. There-
fore, to even talk of the PDF of xT in this manner is to commit
a category error. It is the researcher’s beliefs concerning xT
that are uncertain, and this uncertainty is represented as their
PDF for xT.

Bayes’ theorem is a simple consequence of the axioms of
probability: the joint density p(xo,xT) of two variables xo
and xT can be decomposed in two different ways via

p (xo,xT)= p (xT|xo)p (xo)= p (xo|xT)p (xT)

and thus

p (xT|xo)= p (xo|xT)p (xT)/p (xo) . (2)

p(xT|xo) is our posterior density for the true value xT given
the observational evidence xo. p(xT) is the prior distribution
for xT, which describes the researcher’s belief excluding the
observational evidence. p(xo|xT) is commonly termed the
“likelihood” and is determined by the measurement model:
for example, in the case of an unbiased Gaussian obser-
vational error, such as in Eq. (1), the functional form of
p(xo|xT) is given by

p (xo|xT)=
1

√
2πσ

e
−(xo−xT)2

2σ2 .

When the terms for xo and σ are replaced in this function
by their known numerical values, this function looks like it
could be a probability distribution for p(xT|xo), but as Bayes’
theorem (Eq. 2) makes clear, it is not in general the posterior
PDF, instead being merely one term in its calculation. This
is the critical point which underpins the analyses presented
in this paper: the distribution of the observation defined by
measurement models such as Eq. (1) directly defines the like-
lihood p(xo|xT) and not the posterior PDF p(xT|xo).

The error in the syllogism is to interpret p(xo|xT)
as p(xT|xo): this is a common fallacy known as the confu-
sion of the inverse, which is closely related to the “prosecu-
tor’s fallacy”, the latter term generally being used in discrete
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probability in which the phenomenon is more widely known
and well studied. The fallacy is perhaps easiest to illustrate
with discrete cases which compare P (A|B) to P (B|A) for
a pair of events A and B. For example, the probability of
a person suffering from a rare disease (event A), given that
they tested positive for it (event B), is in general different
from (and often rather lower than) the probability that some-
one produces a positive test result given that they are suf-
fering from the disease. It has been known for some time
that medical doctors routinely commit this transposition er-
ror (Gigerenzer and Hoffrage, 1995). Additional examples
and a further discussion of this type of fallacious reasoning
in relation to interval estimation can be found in Morey et al.
(2016).

We now present a simple example in which the syllogism
leads to poor results in a physically based scenario with con-
tinuous data. We take as given that the timing error of a
handheld stopwatch is ±0.25 s at 1 standard deviation (Het-
zler et al., 2008). That is to say, the measured time to is re-
lated to the true time, tT, via to = tT+ ε with ε ∼N (0, 0.25)
(see Eq. 1). Let us consider an experiment in which an adult
male colleague holds a dense object (say, a stone) at head
height while standing and drops it while the experimenter
times how long it takes for the stone to reach the ground.

An observed time of to = 0.60 s could lead someone to
say via the confusion of the inverse fallacy that the true time
taken is represented by the Gaussian PDF tT ∼N (0.6, 0.25)
(albeit with an assumed truncation at zero which we ignore
for convenience). One implication of this PDF is that there is
a 16 % chance that the true time is less than 0.35 s and also
a 16 % chance that it is more than 0.85 s. Ignoring the neg-
ligible air resistance and using the simple equation of mo-
tion under gravity h= 1

2at
2, one would have no choice but

to conclude from these values that the experimenter’s col-
league has a 16 % chance of being less than 60 cm tall and
also a 16 % chance of being greater than 4.5 m tall. For a typ-
ical adult male, neither of these cases seems reasonable. We
have obtained a measurement which is entirely unremark-
able, with the observed time corresponding to a fall of around
1.75 m. And yet the commonplace interpretation of an impre-
cise measurement as directly giving rise to a probability dis-
tribution for the measurand has led to palpably ridiculous re-
sults. While in many cases the results will not be so silly, this
simple example does demonstrate that the methodology can-
not be sound. The more pernicious cases are those in which
the interpretation is not so obviously silly and thus may be
confidently presented, even though the methodology is still
(as we have just shown) invalid.

In order to make sensible use of this observation, we can
instead perform a simple Bayesian updating procedure. The
distribution N (0.6, 0.25) is actually correctly interpreted as
the likelihood of the observed time p(to|tT), which can be
used to update a prior estimate. The distribution of adult male
heights in the UK (in metres) is taken to be N (1.75, 0.07),
and we use this as our prior. The drop time t predicted from

a height drop h is given by t =
√

2h/a, where a = 9.8 m s−2

is the acceleration due to gravity. Due to the substantial ob-
servational uncertainty, the likelihood of the drop time is vir-
tually flat across the support of the prior, varying by less
than 1 % across the range of 1.60 to 1.90 m. The posterior
estimate obtained through Bayes’ theorem is easily calcu-
lated by direct numerical integration and still approximates
to N (1.75, 0.07) to two decimal places. The correct interpre-
tation of the experiment is not, therefore, that the measure-
ment shows there is a substantial probability of the researcher
breaking a height record, but rather that the measurement is
so imprecise that it does not add any significant information
on top of what was already known.

While it is formally invalid, we must acknowledge that this
syllogism does actually work rather well in many cases. In
particular, if the likelihood p(xo|xT) is non-negligible over a
sufficiently small neighbourhood of xo such that a prior can
reasonably be used which is close to uniform in this region
of xo, then the true posterior calculated by a Bayesian analy-
sis will be close to that asserted by the syllogism. For exam-
ple, if the Gaussian prior xT ∼N (100, 20) were to be used in
the original example, then when this is updated by the like-
lihood corresponding to the observation xo = 74.6 with un-
certainty σ = 0.25, the correct posterior p(xT|xo) is actually
given by N (74.6, 0.25) to several significant digits. In the
limiting case in which an unbounded uniform prior is used
for xT, the syllogism is precisely correct.

Thus, in practice the syllogism can often be interpreted as
a Bayesian analysis in which a uniform prior has been im-
plicitly used, and in cases in which this is reasonable it will
generate perfectly acceptable results. Statements to this ef-
fect have occasionally appeared in some papers wherein a
non-Bayesian analysis has been presented as directly giving
rise to a posterior PDF. It may therefore seem that the terms
“fallacy” and “confusion” are somewhat melodramatic: this
convenient shortcut is often harmless enough. However, this
cannot be simply asserted without proof: there are many ex-
amples of procedures for generating frequentist confidence
intervals in which the results cannot plausibly be interpreted
as Bayesian credible intervals (Morey et al., 2016). In addi-
tion to concerns over the prior, it is also essential when tak-
ing this shortcut that the observational uncertainty σ is taken
to be a constant which does not vary with the parameter of
interest xT. This may be the case when we consider uncer-
tainties arising solely from an observational instrument but
is less clear when σ includes a contribution from the system
under study. For example, if the uncertainty in an observed
estimate of the forced temperature response in an analysis
of climate change includes a contribution due to the internal
variability of the climate system, then this internal variability
might be expected to vary with the parameters of the system.
In this case, an answer generated via the confusion of the in-
verse cannot be rescued by the invocation of a uniform prior.
However, we do not explore this uncertainty in σ further in
this paper.
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Some have attempted to retrospectively defend the use of
this syllogism with the claim that the uniform prior is neces-
sarily the correct one to use, generally via the belief that this
represents some sort of pure or maximal state of ignorance.
However, it is well established (and indeed is sometimes used
as a specific point of criticism) that there is no such thing as
pure ignorance within the Bayesian framework. See Annan
and Hargreaves (2011) for a further discussion of this in the
context of climate science. Our objection to the widespread
application of this procedure is perhaps best summed up by
Morey et al. (2016), who state the following: “Using con-
fidence intervals as if they were credible intervals is an at-
tempt to smuggle Bayesian meaning into frequentist statis-
tics, without proper consideration of a prior.” There is also a
strand of Bayesianism which asserts more broadly that in any
given experimental context there is a single preferred prior,
typically one which maximises the influence of the likelihood
in some well-defined manner. The Jeffreys prior is one com-
mon approach within this “objective Bayesian” framework.
However, it has the disadvantage that it assigns zero proba-
bility to events that the observations are uninformative about.
This “see no evil” approach does have mathematical benefits
but it is hard to accept as a robust method if the results of the
analysis are intended to be of practical use. In the real world,
our inability to (currently) observe something cannot ratio-
nally be considered sufficient reason to rule it out. We do not
consider objective Bayesian approaches further.

It is a fundamental assumption of this paper that in the
cases presented below, in which researchers have presented
observational estimates of temperature change 1To in the
form 1To = µ± σ or in some equivalent manner, they are
(perhaps implicitly) using a measurement model of the form
given in Eq. (1) with µ representing the observational value
obtained and σ representing the expected magnitude of ob-
servational uncertainty (assumed Gaussian throughout this
paper, as is common in the literature). On this basis, the tem-
perature observation gives rise to a likelihood as described
above and does not directly generate a probability distribu-
tion for1TT. We note, however, that authors have not always
been entirely clear about the statistical framework of their
work and it is not always possible to discern their intentions
precisely. Thus, while we confidently believe our interpreta-
tion to be natural and appropriate in many cases, we do not
claim it to be universally applicable.

2.2 Priors for the climate sensitivity

Most probabilistic estimates of the equilibrium climate sensi-
tivity which have explicitly presented a Bayesian framework
have used a prior which is uniform in sensitivity S. There
does not appear to be any principled basis for this choice,
which has been argued on the basis that it represented “ig-
norance”. One could just as easily (and erroneously) argue
that a prior which is uniform in feedback λ= F2×/S was ig-
norant (here F2× is the forcing arising from a doubling of

CO2). In fact, both of these improper priors can exhibit a
pathology which causes problems with their use. In particu-
lar, if the likelihood is non-zero at λ= 0 (S = 0), then when
the improper unbounded uniform prior on S (λ) is used, the
posterior will also be improper and unbounded. In practi-
cal applications, this problem has generally been masked by
the use of an upper bound on the prior, but (while a lower
bound of 0 may be defended on the basis of stability) the
choice of the upper bound is hard to justify. The upper bound
which appears to have been most commonly used for sensi-
tivity is 10 ◦C, and we will adopt this choice here. We use
a range of 0.37–10 for the uniform priors in both λ and S,
which ensures that their ranges are numerically identical (al-
though their units are of course different). As a third alterna-
tive prior for S, we will also use the positive half of a Cauchy
prior, with location 0 and scale parameter 5, i.e. p(S)=

2
5π (1+(S/5)2) , S > 0. An attractive feature of the Cauchy prior
is that it has a long tail which only decreases quadratically
(hence, it does not rule out high vales a priori); moreover,
its inverse is also Cauchy, so both S and λ have broad sup-
port. The scale factor is the 50th percentile of the distribution;
hence, the half-Cauchy prior for S has a 50 % probability of
exceeding 5 ◦C. The scale factor of the corresponding im-
plied prior in λ is given by 3.7/5= 0.74 W m−2 K−1.

3 Applications

We now consider three areas in which observational con-
straints have been used to estimate the equilibrium cli-
mate sensitivity. Firstly, we consider paleoclimatic evidence,
which relates to intervals during which the climate was rea-
sonably stable over a long period of time and significantly
different to the pre-industrial state. We then consider analy-
ses of observations of the warming trend over the 20th cen-
tury (strictly, extending into the 21st and 19th century). Fi-
nally, we consider analyses of interannual variability.

3.1 Paleoclimate

3.1.1 Observationally derived PDFs

A common paradigm for estimating the equilibrium climate
sensitivity S using paleoclimatic data is to consider an in-
terval in which the climate was reasonably stable and signifi-
cantly different to the present and analyse proxy data, such as
pollen grains and isotopic ratios in sediment cores, in order
to generate estimates of the forced global mean temperature
anomaly 1T caused by the forcing anomaly 1F relative to
the current (pre-industrial) climate. S can then be estimated
via the equation

S = F2××1T/1F, (3)

where F2× is the forcing due to a doubling of the atmospheric
CO2 concentration. Examples of this approach include An-
nan and Hargreaves (2006) and Rohling et al. (2012).
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The interval which has been examined in the most detail
in this manner is probably the Last Glacial Maximum at 19–
23 ka (Mix et al., 2001) when the climate was reasonably
stable (at least in the sense of gross evaluations such as global
mean surface air temperature on millennial timescales) and
substantially different to the present day such that the signal-
to-noise ratio in estimates of forcing and temperature change
is reasonably high.

The method adopted by Annan and Hargreaves (2006) and
we believe many others (although this is not always doc-
umented explicitly), which we term sampling the observa-
tional PDFs, was to generate an ensemble of values of S by
repeatedly drawing pairs of samples from PDFs, which are
deemed to represent estimates of the forcing and tempera-
ture anomalies, and calculating for each pair the correspond-
ing value of S using Eq. (3). The ensemble of values for S
so generated is then considered to be a representative sample
from a probabilistic estimate of the truth.

Using values based broadly on those used in Annan and
Hargreaves (2006, 2013), Köhler et al. (2010), and Rohling
et al. (2012), we use observational estimates of 5± 1.5 ◦C
for1T and 9±2 W m−2 for1F (with the uncertainties here
assumed to represent 1 standard deviation of a Gaussian),
along with a fixed value for F2× of 3.7 W m−2. In the illus-
trative calculations presented here we ignore any issues relat-
ing to the non-constancy of the sensitivity S and how it might
vary in relation to the background climate state and nature of
the forcing, although we have slightly inflated the uncertain-
ties of the observational constraints in order to make some
attempt to compensate for this. Thus, the numerical values
generated here are not intended to be definitive but are still
adequate to illustrate the different approaches.

As mentioned in Sect. 2.1, we assume that published es-
timates for 1T can be understood as representing likeli-
hoods p(1To|1TT) – that is to say, the observational anal-
ysis provides an uncertain estimate of the true value of the
form given by Eq. (1) with an a priori unbiased error of
the specified value. The analysis of Annan and Hargreaves
(2013) certainly follows this paradigm, with the estimate of
the uncertainty being informed by a series of numerical ex-
periments in which the estimation procedure was tested on
artificial datasets in order to calibrate its performance. For
the forcing estimate, things are not so clear. We do not have
direct proxy-based evidence for the forcing, which is typi-
cally estimated based on a combination of modelling results
and some rather subjective judgements (Köhler et al., 2010;
Rohling et al., 2012). Any uncertainty in the actual measure-
ments involved, such as those of greenhouse gas concentra-
tions in bubbles in ice cores, makes a negligible contribu-
tion to the overall uncertainty in total forcing. Therefore, we
do not have a clear measurement model of the form given
in Eq. (1) with which to define a likelihood for the forcing.
Thus, we take the stated distribution to directly represent a
prior estimate for the forcing anomaly. We do not claim that
this is the only reasonable approach to take here, and other

Figure 1. Prior and posterior estimates for the climate sensitivity
arising from paleoclimatic evidence. Dashed lines show priors, and
solid lines are posterior densities. The thick cyan line shows the
posterior estimate arising from the method of sampling observa-
tional PDFs, with the corresponding prior shown in Fig. 2. Blue
lines represent results using a uniform prior in λ; red is uniform
in S, and magenta is half-Cauchy (scale: 5) in S (and therefore also
half-Cauchy in λ; scale: 3.7/5).

researchers might prefer to make different choices, in partic-
ular if they could clearly identify a likelihood arising from
observational data.

When applied to the numerical estimates provided above,
the PDF sampling method of Annan and Hargreaves (2006)
generates an ensemble for S with a median estimate of 2.1 ◦C
and a 5 %–95% range of 1.0 to 3.8 ◦C. Figure 1 presents this
result as the cyan line, together with additional results which
will be described below.

3.1.2 Bayesian interpretation and alternative priors

Now we present alternative calculations which take a more
standard and explicitly Bayesian approach. We start by writ-
ing the model in the form

1T = S×1F/3.7, (4)

or equivalently

1T =1F/λ, (5)

where λ= S/3.7 is the feedback parameter. This formula-
tion allows us to easily consider the forcing and feedback
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parameter to be uncertain inputs (for which we can explicitly
define prior distributions) to the model, which can then be
updated by the likelihood arising from the observed temper-
ature change.

Although the method of sampling observational PDFs de-
scribed in Sect. 3.1.1 was not presented in Bayesian terms,
we are now in a position to present a Bayesian interpreta-
tion of it. The distribution generated by sampling the PDFs
is distributed as independently GaussianN (5, 1.5) in1T and
Gaussian N (9, 2) in 1F . We aim to choose a prior such that
the Bayesian analysis will generate this as the posterior after
updating by the likelihood for 1T . This likelihood as de-
scribed above is taken to be the Gaussian N (5, 1.5). There-
fore, by rearrangement of Bayes’ theorem, the desired prior
must be uniform in 1T and independently Gaussian N (9, 2)
in1F . For numerical reasons we must impose bounds on the
uniform prior for 1T , and we set this range to be 0–20 ◦C.

Using Eq. (3), we can re-parameterise this joint prior dis-
tribution over1T and1F into a distribution over S and1F ,
and this is presented in Fig. 2. Note that this prior cannot
be represented as the product of independent distributions
over S and1F , as high S here is correlated with low1F and
vice versa. The prior in S when viewed as a marginal distri-
bution (i.e. after integrating over 1F ) appears uniform over
a significant range (roughly between S = 0.6 and S = 5), but
within this range it is associated with somewhat high val-
ues for 1F , with the latter taking a mean value of about
9.5 W m−2 over this region. The details of the shape of this
joint prior depend on the bounds placed on the uniform prior
for 1T , but this does not affect the posterior so long as the
prior is broad enough to cover the neighbourhood of the
observation. We think it is unlikely that researchers would
choose a joint prior of this form deliberately and confirm
that this certainly was not the case in Annan and Hargreaves
(2006). In future analyses it would seem more appropriate to
clearly state the priors which are used and test the sensitivity
of the results to this choice.

In order to perform a more conventional Bayesian updat-
ing procedure using Eq. (5), we must first select priors on the
model inputs. Since the sensitivity is a property of the cli-
mate system, whereas the forcing is specific to the interval
we are considering, we define their priors independently. For
the forcing1F , we retain theN (9, 2) prior, having no plausi-
ble basis for trying anything different. For sensitivity, we test
the three priors described in Sect. 2.2. The two uniform priors
generate rather different results. Using a prior which is uni-
form in S, the posterior has a mean value for S of 2.2 ◦C and
a 5 %–95% range of 1.0–4.2 ◦C. When we change to uniform
in λ the median decreases to 1.5 ◦C with a 5 %–95% range of
0.5–3.0 ◦C. While these results, which are shown in Fig. 1,
overlap substantially, broadening the upper bounds on the
priors would result in the first result increasing without limit
and the second decreasing towards zero such that they would
fully separate. We therefore see that extreme choices for the
prior on S (or λ) can have a significant influence on Bayesian

Figure 2. Implicit prior used in the paleoclimate estimate. The con-
tour plot shows the joint prior in S and 1F with marginal densi-
ties shown at the top and right, respectively. Vertical and horizontal
dashed lines are drawn at S = 0.6, 5, and 1F = 9.

estimation, which is perhaps not surprising given the large
uncertainties in the observational constraints used here. The
median posterior value for S obtained from the half-Cauchy
prior is 2.1 ◦C with a 5 %–95% range of 1.0–3.8 ◦C, which
coincidentally aligns very closely with the result obtained by
the naive method of sampling observational PDFs (which is
plotted as a thick line in Fig. 1 in order to make it more vis-
ible). We conclude in this case that the method of sampling
PDFs has generated a result which is reasonable, but alter-
native choices of the prior could give noticeably different re-
sults.

3.2 Estimates based on historical warming

3.2.1 Observationally derived PDFs

Perhaps the most common approach to estimating S has been
to use the instrumental record (Tol and De Vos, 1998; Gre-
gory et al., 2002; Olson et al., 2012; Aldrin et al., 2012).
While a wide range of climate models have been utilised
for this purpose, a simple energy balance similar to that of
Sect. 3.1 can be used so long as the radiative imbalance is
accounted for. We follow the recent analysis of Mauritsen
and Pincus (2017) but simplify their calculation by ignor-
ing uncertainty in F2×, instead adopting their mean value of
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3.71 W m−2 (using all their uncertain numerical values oth-
erwise). This simplification has very little influence on the
results. Mauritsen and Pincus (2017) present the basic en-
ergy balance in the form

S = F2×1T/(1F −1Q), (6)

where 1Q represents the net planetary radiative imbalance
and the other terms are as before. We emphasise that1T here
specifically denotes the forced temperature change. This
equation is applied between two widely separated decadal-
scale intervals within the historical record such that the
signal-to-noise ratio in the temperature change (and hence
precision in the resulting estimate of S) is as large as pos-
sible, though it remains a significant source of uncertainty
(Dessler et al., 2018). Similar to Sect. 3.1.1, the method used
by Mauritsen and Pincus (2017) is one of sampling obser-
vationally derived PDFs for all uncertain quantities on the
right-hand side of Eq. (6), thereby generating an ensemble of
values for S which was interpreted as a probability distribu-
tion.

3.2.2 Bayesian interpretation and alternative priors

As in Sect. 3.1.2, we reorganise Eq. (6) in order to give 1T
as the prognostic variable, assigning priors to the terms on
the right-hand side. We thus obtain

1T = (1F −1Q)× S/F2× = (1F −1Q)/λ. (7)

We adopt the distributions used by Mauritsen and Pincus
(2017) for1F and1Q as priors for these variables but inter-
pret their estimate for the temperature change 1To as a like-
lihood p(1To|1T )∼N (0.77, 0.08) arising from the mea-
surement model of Eq. (1). This arises immediately from the
paradigm of the observed total temperature response consist-
ing of the forced response summed together with a contribu-
tion from internal variability which can be assumed indepen-
dent of the forced response itself. In this case, the analysis
of observed temperatures generated the (deterministic) value
1To = 0.77 ◦C, with the uncertainty estimate being sepa-
rately derived as an estimate for the likely contribution of
internal variability to a temperature change over such a time
interval (Lewis and Curry, 2014). True measurement errors
in the calculation of1To are sufficiently small relative to this
internal variability that they can be safely ignored.

Given the similarities between Eqs. (3) and (6), and also in
the method used, it is no surprise to find that the implicit prior
used here before updating with the temperature likelihood is
qualitatively similar to that found in Sect. 3.1. This is shown
in Fig. 3. Again, the marginal prior over S appears uniform
over a reasonable range (the details depend on the limits of
the uniform prior over 1T ), but nevertheless it is actually
correlated with the net forcing. Figure 4 shows the posterior
result arising from this prior, which matches the published
result of Mauritsen and Pincus (2017) closely despite our

Figure 3. Implicit prior used in the 20th century estimate.

minor simplification to their calculation. The posterior me-
dian calculated here is 1.8 ◦C with a 5 %–95% range of 1.1–
4.5 ◦C. As in Sect. 3.1, we make no attempt to decompose
the forcing estimate used here into a prior and likelihood,
especially as some of the largest uncertainties (e.g. that aris-
ing from aerosol forcing) are based on modelling calculations
and expert judgements that cannot be transparently traced to
uncertainties in observational data.

Alternative priors and their resulting posteriors after
Bayesian updating using Eq. (7) are shown in Fig. 4. As
before, we test the three priors presented in Sect. 2.2. The
posterior median values (and 5 %–95% range) for S aris-
ing from these are 2.1 ◦C (1.2–6.3 ◦C) for uniform S, 1.5 ◦C
(1.0–3.1 ◦C) for uniform λ, and 2.0 ◦C (1.1–5.0 ◦C) for the
half-Cauchy prior. Thus, again the half-Cauchy prior pro-
duces a result which is intermediate between the other ex-
plicit choices, though this time it has a somewhat longer
tail than the PDF sampling method. The differences between
these results, especially for the upper 95 % limit, are sub-
stantial and could significantly alter their interpretation and
impact.

3.3 Estimates based on interannual variability

3.3.1 Observationally derived PDFs

Finally, we consider a method which has been used to es-
timate the climate sensitivity via interannual variation in
the radiation balance and temperature (Forster and Gregory,
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Figure 4. Priors and posteriors in explicit Bayesian estimates us-
ing 20th century data. Dashed lines show priors, and solid lines are
posterior densities. The thick cyan line shows the posterior estimate
arising from the method of sampling observational PDFs, with its
implicit prior shown in Fig. 3. Blue lines represent results using a
uniform prior in λ; red is uniform in S, and magenta is half-Cauchy
(scale: 5) in S (and therefore also half-Cauchy in λ; scale: 3.7/5).

2006; Dessler and Forster, 2018). The basic premise of these
analyses is that the feedback parameter can be estimated as
the slope of the regression line of the net radiation imbalance
(based primarily on satellite observations) against tempera-
ture anomalies, with data typically averaged on an annual
timescale (though seasonal data may also be used). There
are questions as to whether this short-term variability pro-
vides an accurate estimate of long-term changes, but this is
beyond the scope of this paper (Dessler and Forster, 2018).
The regression slope and its uncertainty naturally translate
into a Gaussian likelihood for the true feedback component
and have been commonly interpreted as a probability distri-
bution for λ. While this again appears on the face of it to
commit the fallacy of confusion of the inverse, the implicit
assumption of a uniform prior on λ that underpins this inter-
pretation has been clearly acknowledged by authors working
in this area (e.g. see comments in Forster and Gregory, 2006;
Forster, 2016). In this section we will use the observational
estimate of Forster and Gregory (2006), which is given by
λo = 2.3±0.7 W m−2 K−1. We note that when uncertainty in
the forcing arising from a doubling of CO2 is ignored, there
is a trivial transformation between λ and S via S = F2×/λ.

Figure 5. Priors and posteriors over S in a process-based feedback
analysis. Dashed lines indicate priors, and solid lines are posteriors.
The thick cyan line shows the posterior estimate arising from the
method of sampling observational PDFs, which coincides precisely
with the blue line that corresponds to the uniform prior in λ. Red
lines show results using a uniform prior in S, and magenta is half-
Cauchy (scale: 5) in S.

Therefore, a likelihood for λ can be directly interpreted as an
equivalent likelihood for S.

3.3.2 Bayesian interpretation and alternative priors

As noted by Forster and Gregory (2006), presenting what ac-
tually amounts to an observational likelihood for λ as a pos-
terior PDF is equivalent to assuming a uniform prior in λ (see
also Annan and Hargreaves, 2011). Therefore, the Bayesian
interpretation is already clear in this instance.

In Fig. 5 we present the results of calculations using our
three alternative priors (although one of them coincides with
the method of sampling PDFs). The original result of Forster
and Gregory (2006) (after transforming to S space) is rep-
resented by the blue lines, with red showing the result ob-
tained for a uniform prior in S and magenta being a Cauchy
prior. We note that, for the uniform S case, if the upper bound
on the prior was raised, the posterior would also increase
without limit due to the pathological behaviour discussed
in Sect. 3.1.2 and also by Annan and Hargreaves (2011).
For the priors shown (with the uniform priors defined as
U [0.37, 10]) the 5 %–95% ranges of the posteriors are 1.1–
3.2, 1.2–6.9, and 1.2–5.2 ◦C for the uniform λ, uniform S,
and Cauchy S priors, respectively. The uniform λ prior com-
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monly adopted by analyses of this type provides a strong ten-
dency towards low values, and the contrast with uniform S,
especially for the upper bound, is disconcerting.

4 Conclusions

We have shown how various calculations which have pre-
sented probabilistic estimates of the equilibrium climate sen-
sitivity S can be reinterpreted within a standard Bayesian
framework. Using this standard framework ensures a clear
distinction between the prior choices, which must be made
for model parameters and inputs, and the likelihood obtained
from observations of the system, which is then used to update
this prior in order to generate the posterior.

In many cases, the implied prior for S which (according
to this interpretation) underlies the published results appears
somewhat unnatural, having either a structural relationship
with model inputs or a marginal distribution that may not be
considered reasonable. We have presented alternative calcu-
lations in which a range of simple priors are tested. In addi-
tion to the commonly used uniform priors, we have shown
that a Cauchy prior has some attractive features in that it ex-
tends to high values (refuting any suspicion that the results
obtained were simply constrained by the prior), and its recip-
rocal is also Cauchy (so both S and λ may have long tails).
The half-Cauchy distribution used in this paper only requires
a single scale parameter which determines the width. How-
ever, the choice of priors is always subjective, and we make
no assertion that this choice should be universally adopted.
Indeed, there may be superior alternative choices that we
have not considered.

Our calculations suggest that the PDF sampling method
can generate acceptable results in some cases, agreeing fairly
well with a fully Bayesian approach using reasonable priors.
However, this is not always the case. We recommend that
researchers present their analysis in an explicitly Bayesian
manner as we have done here, as this allows the influence of
the prior and other uncertain inputs to be transparently tested.
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