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Abstract. Analyzing a dynamical system describing the global climate variations requires, in principle, explor-
ing a large space spanned by the numerous parameters involved in this model. Dimensional analysis is tradition-
ally employed to deal with equations governing physical phenomena to reduce the number of parameters to be
explored, but it does not work well with dynamical ice-age models, because, as a rule, the number of parameters
in such systems is much larger than the number of independent dimensions. Physical reasoning may, however,
allow us to reduce the number of effective parameters and apply dimensional analysis in a way that is insightful.
We show this with a specific ice-age model (Verbitsky et al., 2018), which is a low-order dynamical system
based on ice-flow physics coupled with a linear climate feedback. In this model, the ratio of positive-to-negative
feedback is effectively captured by a dimensionless number called the “V number”, which aggregates several
parameters and, hence, reduces the number of governing parameters. This allows us to apply the central theorem
of the dimensional analysis, the π theorem, efficiently. Specifically, we show that the relationship between the
amplitude and duration of glacial cycles is governed by a property of scale invariance that does not depend on
the physical nature of the underlying positive and negative feedbacks incorporated by the system. This specific
example suggests a broader idea; that is, the scale invariance can be deduced as a general property of ice age
dynamics if the latter are effectively governed by a single ratio between positive and negative feedbacks.

1 Introduction

Mathematical modeling of Pleistocene ice ages using astro-
nomically forced spatially resolving models of continental
ice sheets, the ocean, and the atmosphere has always been
and remains a computational challenge. Therefore, though
higher-resolution models (e.g., Abe-Ouchi et al., 2013) and
models of intermediate complexity (e.g., Verbitsky and Cha-
likov, 1986; Chalikov and Verbitsky, 1990; Gallée et al.,
1991; Ganopolski et al., 2010) are gaining popularity, it has
been argued for a long time that significantly less computa-
tionally demanding dynamical models may provide just as
much insight as the models with more degrees of freedom
(Saltzman, 1990). However, even though the computational
load for solving dynamical equations is minimal, the work
and number of experiments needed for spanning the full pa-
rameter space is easily overwhelming. Analyzing a dynam-
ical system of ice ages is thus, in principle, a difficult task.

In mathematical physics, the method of dimensional analy-
sis (e.g., Barenblatt, 2003) has been traditionally employed
to take advantage of symmetry or invariance principles and,
as a result, to reduce the number of effective parameters. It
has not been applied to low-order models of the Pleistocene
climate, because in such models the number of governing
parameters is much larger than the number of independent
dimensions. Indeed, the number of independent dimensions
in a dynamical system does not exceed the number of vari-
ables (it may be smaller if some variables have the same or
dependent dimensions), to which one adds time, which is al-
ways present in a dynamical system. For example, the dy-
namical system of Saltzman and Verbitsky (1993) described
the evolution of four variables: ice volume (in cubic meters),
CO2 concentration (in parts per million), ocean temperature
(in degrees Celsius), and bedrock depression (in meters). The
number of independent dimensions, including time, was thus
four. This system had 18 parameters, including the amplitude
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and the period of the external forcing. In such a case, the
π theorem (Buckingham, 1914) – the tenet of dimensional
analysis – is of little help in simplifying the analysis and ef-
fectively providing physical insight, because, even in the di-
mensionless form, the system would still contain 14 (18− 4)
dimensionless groups.

In Verbitsky et al. (2018), we derived a dynamical model
of the Pleistocene climate from the scaled conservation equa-
tions of viscous non-Newtonian ice and combined them with
an equation describing the evolution of the climate tempera-
ture. The work was motivated by the prospect of delivering
a low-order, parsimonious approach to the problem of un-
derstanding glacial–interglacial cycles. The state of the ice–
climate system is summarized by a 3-dimensional vector:
glaciation area S (in square meters), ice sheet basal temper-
ature θ (in degrees Celsius), and climate temperature ω (in
degrees Celsius). The number of independent dimensions, in-
cluding time, is thus three. However, despite our effort to be
parsimonious in the physical description, the model includes
12 parameters, which is still much larger than the number of
independent dimensions. As now we may have nine (12− 3)
dimensionless groups; this is obvious progress relative to the
Saltzman and Verbitsky (1993) model but not enough for an
effective use of the π theorem. The situation changed dra-
matically when we discovered that the dynamical properties
of the system are largely defined by the dimensionless V
number incorporating eight model parameters and measur-
ing the ratio of climate system positive feedback over the
negative feedback from the ice sheet itself. At once, seven
parameters are effectively eliminated, and using the π the-
orem became an attractive prospect. We first applied the π
theorem reasoning to investigate the propagation of millen-
nial forcing into ice-age dynamics (Verbitsky et al., 2019a)
and found that the millennial forcing introduces a disruption,
i.e., shifts the system equilibrium point, and this disruption
is proportional to the second degree of the forcing period.

In this paper we will apply this approach systematically to
all model variables. This will allow us to demonstrate that,
in the model, glacial area and climate temperature are scale
invariant in the orbital frequencies domain (in the case of the
climate temperature – even beyond this domain) and observe
that this property does not depend on the specific physical na-
ture of the climate system feedbacks. This observation is im-
portant. The empirical analysis of paleoclimate series shows
that there is a rich spectral content and points to the exis-
tence of “spectral slopes” (e.g., Huybers and Curry, 2006;
Lovejoy and Schertzer, 2013). Lovejoy and Schertzer (2013)
evoke some generic process, such as the principle of “cas-
cades” which is tightly linked to the concept of scale invari-
ance of the equations. For example, the scale invariance of
fluid-dynamics equations is exploited to provide inferences
about spectral slopes of turbulent flows. However, to our
knowledge, there is no available theory supporting scale in-
variance in regimes associated with glacial–interglacial dy-
namics. Yet, paleoclimate simulations with more sophisti-

cated models, including the seminal paper by Abe-Ouchi et
al. (2013) and the simulations with CLIMBER provided by
Ganopolski et al. (2010), tend to focus on the response of
the ice-sheet climate system to orbital forcing and discuss
the respective amplitudes of the 100, 41, and 21–23 kyr peri-
ods, but none discuss the slope of the power spectrum down
to the millennium scale. Therefore, we believe that our re-
search will provide at least some important elements that
should help us to bridge both approaches

Accordingly, our paper is structured as follows. First, we
will briefly recapture equations, parameters, and dimensions
of the Verbitsky et al. (2018) model. Then we will remind
readers of the essence of the π theorem, apply it to all model
variables, and discuss its implications.

2 A dynamical model of Pleistocene glacial
rhythmicity

The nonlinear dynamical model of the global climate system
(Verbitsky et al., 2018) is derived from the scaled equations
of ice sheet thermodynamics, combined with a linear feed-
back equation involving an effective “temperature”, which
describes the climate state outside the ice region.

dS
dt
=

4
5
ζ−1S3/4 (a− εFS− κω− cθ ) (1)

dθ
dt
= ζ−1S−1/4 (a− εFS− κω) {αω+β [S− S0]− θ} (2)

dω
dt
= γ1− γ2 [S− S0]− γ3ω (3)

The model variables and their dimensions are defined as fol-
lows: S (in square meters) is the glaciation area, θ (in degrees
Celsius) is the basal ice sheet temperature, and ω (in degrees
Celsius) is the effective global climate temperature. The third
equation implicitly accounts for the effect of the response of
CO2 concentration, along with other radiative feedbacks.

Model parameters along with their dimensions are as fol-
lows: ζ (measured in meters to the 1/2 power) is the “shape”
factor of the ice sheet; a (in meters per second) is the charac-
teristic rate of snow precipitation; FS is normalized mid-July
insolation at 65◦ N (Berger and Loutre, 1991); ε (in meters
per second) is the amplitude of the external forcing; κ (in me-
ters per second per degree Celsius) and c (in meters per sec-
ond per degree Celsius) are sensitivity parameters, describ-
ing, correspondingly, climate temperature and basal sliding
impacts into ice-sheet mass balance; the dimensionless co-
efficient α describes basal temperature sensitivity to global
climate temperature changes; coefficient β (in degrees Cel-
sius per square meter) defines basal temperature dependence
on ice sheet dimensions; S0 (in square meters) is a reference
glaciation area; and γ1 (in degrees Celsius per second), γ2 (in
degrees Celsius per square meter per second), and γ3 (in per
second) define climate temperature evolution, 1/γ3, being a
time constant. If the forcing is periodic, then we may con-
sider that the system dynamics are described by an additional

Earth Syst. Dynam., 11, 281–289, 2020 www.earth-syst-dynam.net/11/281/2020/



M. Y. Verbitsky and M. Crucifix: π-theorem generalization of the ice-age theory 283

parameter: the forcing period T (in seconds). Thus we have a
system of three variables, three (including time) independent
dimensions, and 12 parameters. The system Eqs. (1)–(3) is
not sensitive to initial conditions, and, therefore, we do not
include the latter into the list of parameters.

Physical reasoning and numerical experiments (Verbitsky
et al., 2018) led us to the suggestion that the system response
is essentially determined by the V number, measuring a bal-
ance between positive and negative model feedbacks as fol-
lows:

V =
1
β

(
α+

κ

c

)(
γ2

γ3
−

γ1

S0γ3

)
. (4)

Here parameter β is a measure of ice-sheet negative feed-
back. The term (α+ κ/c)(γ2/γ3− γ1/γ3/S0) measures the
climate system positive feedback (Verbitsky et al., 2018).

If we assume that the V number effectively captures the
behavior of the model with respect to the eight parameters
included in its definition, then the number of parameters is
effectively reduced to five: V , ζ , a, ε, and T . We assume
further that parameter ζ in Eqs. (1)–(2) is a constant, thus
assuming an invariant relationship between ice thickness H
and glaciation area S (H = ζS1/4; Verbitsky et al., 2018). We
also note that the V number has been assembled using com-
ponents of the steady-state solution of the system Eqs. (1)–
(3) (Verbitsky et al., 2018). Obviously, parameter ζ , as a mul-
tiplier, is not part of this steady-state solution. Therefore our
hypothesis that the V number defines the behavior of the
model in fact also includes the assumption that the impact
of the parameter ζ on the system behavior, at the reference
value, is weak. As a result, we end up with the assumption
that the response of the system to external forcing is essen-
tially determined by no more than four parameters: V , a, ε,
and T . We will now learn how to profit from this advantage.

3 Dimensional analysis of model variables

3.1 Period of the system response to the external
forcing, P

We previously noticed (Verbitsky et al., 2018) that with weak
climate positive feedback (V ∼ 0), the system, exhibits fluc-
tuations in response to the astronomical forcing with a dom-
inating period of about 40 kyr, which may arise as either a
direct response to obliquity or a doubled-period response to
the forcing associated with climatic precession (2× 20kyr).
When the climate positive feedback intensifies such that
V ∼ 0.75 and external forcing is strong, the system evolves
with a doubled obliquity period. We can therefore assume
that the period of the system response to the external forcing,
P , is a function of the V number, the amplitude of the exter-
nal forcing, ε, and the period of the external forcing, T . We
thus begin with the most general hypothesis:

P = ψ (V,a,ε,T ) . (5)

Figure 1. A typical illustrative 9 (V,ε/a) function. Red arrow rep-
resents hypothetical trajectory of the Pleistocene history of the sys-
tem, which includes the following: from doubled precession peri-
ods of the early Pleistocene to doubled obliquity periods of the late
Pleistocene.

It is at this stage that the π theorem intervenes. Specifically,
it stipulates that a physical relationship should not depend on
a system of units, and therefore, in the dimensionless form,
the number of dimensionless arguments is equal to the to-
tal number of the governing parameters minus the number of
governing parameters with independent dimensions (Buck-
ingham, 1914). If we select dimensions of ε and T as inde-
pendent dimensions, then application of the π theorem to the
Eq. (5) gives us the following:

P/T =9 (V,ε/a) (6)
P = T9 (51,52) ;51 = V,52 = ε/a. (7)

Figure 1 presents a sketch of what the function 9 (V,ε/a)
may look like, qualitatively. The underlying idea is that the
Pleistocene history of the climate system may be understood
as a trajectory in the

[
V,ε/a

]
space (Crucifix and Verbitsky,

2019). The shape and location of the period-doubling domain
9 = 2 is expected to depend on the forcing period.

It is interesting that Fig. 1 is consistent with a similar map
produced by a conceptual model built on a completely differ-
ent principle, i.e., the simple oscillator type model of Daruka
and Ditlevsen (2016). In both cases, the obliquity period dou-
bling requires relatively intense external forcing in combina-
tion with the relatively high V number (or reduced damping
in the case of Daruka and Ditlevsen, 2016). This similarity
implies that the importance of the V number for a climate
system dynamics may extend well beyond the Verbitsky et
al. (2018) model.

3.2 Amplitude of the glacial area variations, Ś

We begin again with the most general hypothesis. We suggest
that the amplitude of glacial area variations Ś is a function of
the V number, the characteristic rate of snow precipitation,
a, the amplitude of the external forcing ε, and the period of
the system response P as it is described by Eq. (7). The re-
lationship between the period of the response and that of the
forcing may therefore be nontrivial. It means that the system
response may exhibit original forcing periods or multiples of
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them.

Ś= ϕ (V,a,ε,P ) (8)

If the hypothesis Eq. (8) is true, then, taking dimensions of ε
and P as independent dimensions and using the π theorem,
we obtain:

Ś/
(
ε2P 2

)
=8 (V,ε/a) ,

and finally:

Ś= ε2P 28 (51,52) . (9)

Neither 51 nor 52 contains P . Equation (9) therefore im-
plies that, at constant amplitude of the external forcing ε, the
amplitude of glacial area variations is scale invariant with
a frequency slope equal to 2. Figure 2 (Ś with reference
parameter values) presents a numerical test of the hypothe-
sis Eq. (8) and of its implication Eq. (9). Here, we measure
the system response to single-sinusoid forcings of constant
amplitude and periods T varying from 5 to 50 kyr. The sys-
tem responds to this forcing with periods P ranging from 5 to
100 kyr, because forcing periods T of 40 and 50 kyr produce
response periods P of 80 and 100 kyr, correspondingly. It can
be seen that the Ś-amplitude frequency slope, βa, is close to 2
(i.e., βa = 1.8) for periods between 30 and 100 kyr. It means
that the amplitude of glacial area variations is scale invari-
ant in the orbital domain.

3.3 Amplitude of the basal temperature, θ́

The amplitude spectrum of the θ variable cannot be derived
unambiguously from the same simple considerations as we
have employed for P and Ś because of the following rea-
sons: (a) we cannot constrain ourselves with only parameters
V , a, ε, and P , since the basal temperature θ is measured in
degrees Celsius, but none of ε, a, or P contains degrees Cel-
sius and (b) as soon as we disassemble the V number, i.e., use
all individual model parameters instead of V , the advantage
of using the π theorem is lost. Nevertheless, if we disassem-
ble the V number wisely, we can minimize the number of di-
mensional parameters, and, as a result, we may be rewarded
by discovering the identities of critical groups that define the
scaling properties of θ . Accordingly, we will disassemble the
V number using not the individual parameters involved but
instead using dimensionless groups that are present in the V
number: α, κ

c
,

γ1
βγ3,S0

, and γ2
βγ3

. If we consider that the group
γ1

βγ3S0
is a dimensionless representation of the parameter γ1

and the group γ2
βγ3

is a dimensionless representation of the
parameter β, then the remaining parameters γ2,γ3, and S0
need to be represented individually in the dimensional form.
Taking this together, this yields the following hypothesis:

θ́ = χ

(
α,
κ

c
,
γ1

βγ3S0
,
γ2

βγ3
,γ2,γ3,S0,a,ε,P

)
. (10)

Figure 2. The system response to a single-sinusoid external forc-
ing of constant amplitude and different periods: (1) Ś with refer-
ence parameter values; (2) ώ with reference parameter values; (3) Ś
with intensive climate temperature and weak albedo positive feed-
backs; (4) ώ with intensive climate temperature and weak albedo
positive feedbacks; (5) Ś with weak climate temperature and inten-
sive albedo positive feedbacks; (6) ώ with weak climate tempera-
ture and intensive albedo positive feedbacks; (7) Ś with intensive
climate temperature positive and ice-sheet basal temperature neg-
ative feedbacks; (8) ώ with intensive climate temperature positive
and ice-sheet basal temperature negative feedbacks; (9) Ś with weak
climate temperature positive and ice-sheet basal temperature nega-
tive feedbacks; and (10) ώ with weak climate temperature positive
and ice-sheet basal temperature negative feedbacks.

Taking γ2,S0, and P as independent dimensions, the π theo-
rem implies:

θ́ = γ2S0P

X

(
α,
κ

c
,
γ1

βγ3S0
,
γ2

βγ3
,γ3P,aPS

−1/2
0 ,εPS

−1/2
0

)
, (11)

or, combining groups α, κ
c
,

γ1
βγ3S0

, and γ2
βγ3

back into V num-
ber as follows:

θ́ = γ2S0PX
(
V,γ3P,aPS

−1/2
0 ,εPS

−1/2
0

)
. (12)

Since 52 = ε/a,

θ́ = γ2S0PX (51,52,53,54) , (13)

where 53 = γ3P , and 54 = εPS
−1/2
0 .

As 53 and 54 include P , then, generally speaking, the
amplitude of basal temperature variations is not expected to
be scale invariant. Under some circumstances though, the
function X (51,52,53,54) may become P -independent
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and the amplitude of the basal temperature variations may
develop the property of scale invariance. For example, we
observed experimentally that when 54→ 0 (e.g., the ampli-
tude of the external forcing, ε, is reduced), the Eq. (13) be-
comes scale invariant with a frequency slope equal to 1. In
this case θ́ = γ2S0PX (51,52,53/54).

3.4 Amplitude of the climate temperature, ώ

Since Eq. (3) for ω is linear, it may provide us with a hint
about the response scaling characteristics of this variable. In
the orbital domain53 = γ3P � 1 so that Eq. (3) may be ap-
proximated as γ3ω ≈ γ1− γ2 (S− S0). Hence, ώ = γ2

γ3
Ś. We

may hypothesize therefore that in the orbital domain and pos-
sibly even beyond:

ώ = ν

(
V,
γ2

γ3
,a,ε,P

)
. (14)

Taking the dimensions of γ2
γ3
,ε, and P as independent and

applying again π -theorem reasoning, we should expect that

ώ =
γ2

γ3
ε2P 2N (51,52) . (15)

At constant amplitude of the external forcing ε, Eq. (15) im-
plies that the amplitude of climate temperature variations ώ
grows with the square of the response period. The results pre-
sented in Fig. 2 (ώ with reference parameter values) support
the hypothesis (14) and its implication (15): the ω variable
amplitude frequency slope is close to 2 (i.e., βa = 1.8) for
periods between 5 and 100 kyr. It means that in the orbital
and millennial domains, the amplitude of the climate temper-
ature is scale invariant.

4 Discussion

4.1 Scale invariance and a physical nature of the
climate system feedbacks

So far, we have based our implications of scaling relation-
ships on the significance of a dimensionless number (in our
case, the V number) quantifying a mean ratio between posi-
tive and negative feedbacks. That is, the scaling relationships
found should be robust across changes in the composition of
V , provided that the value of V is unchanged. To illustrate
this implication, we conducted four numerical experiments.
In the first experiment, we increase coefficients α and κ 2-
fold and reduce γ2 by a half relative to their reference values.
This does not change the reference value of the V number
(see the Eq. 4, and note that the reference value of γ1 = 0)
that is V = 0.75 but transforms system Eqs. (1)–(3) into a
system where the positive feedback is dominated by the cli-
mate temperature affecting ice-sheet mass balance and its
temperature regime. We then measure the system response to
the single-sinusoid forcing of the same amplitude and periods
T = 5–50 kyr. (Note that periods T = 40 and 50 kyr produce

system response of periods P = 80 and 100 kyr, correspond-
ingly). In the second experiment, we decrease coefficients α
and κ by 50 % and increase γ2 2-fold relative to their refer-
ence values. Again, this does not change the reference value
of the V number, V = 0.75, but transforms system Eqs. (1)–
(3) to a system where the positive feedback is dominated by
the albedo feedback. In the third experiment, we increase co-
efficients α and κ by 50 % as well as the coefficient β, thus
creating the system with intensive climate–temperature pos-
itive feedback and intensive ice-sheet basal temperature neg-
ative feedback, the V number still being equal to 0.75. And
finally, we decrease coefficients α, κ , and β by 50 %, making
a system with weak climate–temperature positive and ice-
sheet basal temperature negative feedbacks. The response of
all four systems to the external forcing is shown in Fig. 2. De-
spite different underlying physics, all four systems demon-
strate the same outcomes: in the orbital domain, their ampli-
tudes of glacial area variations are scale invariant with 1.8
frequency slope, and the amplitudes of the climate tempera-
ture are scale invariant in the orbital and millennial domains
with the same slope.

This robustness is comforting. As we know, the physical
interpretation of a low-order dynamical model can be partly
ambiguous. For example, the mechanisms responsible for the
changes in the effective climate temperature and how it im-
pacts the ice mass balance are not fully described in this
model. It is therefore reassuring to have been able to iden-
tify what seems to be the key ingredient for the scaling rela-
tionship, in this case, that a single quantity (the V number)
grossly determines the dynamics of the system response. In
other words, it relies on the fact that the number of effective
parameters is smaller than is apparent from a more detailed
description of the system.

This, incidentally, shows how difficult it is to disambiguate
the physical mechanisms responsible for a given behavior.
Different assemblages yielding the same V number will,
indeed, produce slightly different solutions but less differ-
ent than one could have perhaps expected. The dimension-
less functions like, for example, function 8 (V,ε/a) in the
Eq. (9),

Ś= ε2P 28 (V,ε/a) ,

and function 8′ (V,ε/a), corresponding to the same value of
the V number but formed by the different physics (different
set of parameters),

Ś= ε2P 28′ (V,ε/a) ,

though not identical, yield the same scaling behavior.
If the amplitude of the external forcing ε is constant,
the period P shows up only as a power-law mono-
mial ∼ P n, and its power n makes the same scale-
invariant amplitude-spectrum slope regardless of the spe-
cific physics defining the V number. In other words, though
the functions ψ (V,a,ε,T ), ϕ (V,a,ε,P ), χ (V,a,ε,P ), and
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ν(V, γ2
γ3
,a,ε,P ) may change depending on the specific

physics forming the V number, their governing parameters
always remain the same because they are determined by
the structure of the system Eqs. (1)–(3). Accordingly, the
functions 9 (51,52), 8 (51,52), X (51,52,53,54), and
N (51,52) may also change, but their dimensionless argu-
ments (5 groups) remain unaffected. As long as their groups,
like, for example, 51 and 52, do not contain P , we have a
possibility of scale-invariance. This observation makes the
scale invariance a very general and expected property of the
climate system.

The physical interpretation of the dynamical model we
employ in this study (Verbitsky et al., 2018) is very straight-
forward as far as Eqs. (1) and (2) are concerned; these are
scaled equations of mass and energy conservation of vis-
cous ice flow. We must admit, though, that Eq. (3) of the
climate temperature is, indeed, ambiguous. In other words,
we are uncertain about some key mechanisms that we have
chosen to describe using the rest-of-the-climate linear equa-
tion. Among others, these may be nonlinear effects related
to the carbon cycle, nonlinear effects of sea-level destabi-
lization of ice sheets and related synchronization, nonlinear
effects associated with atmospheric circulation, or nonlinear
effects related to biogenic calcifiers and their action on alka-
linity, etc. A challenger might thus claim that these effects
are so important that they should be considered more explic-
itly. Indeed, we have the hope that even after accounting for
these processes, we might end up with a model that still has
grossly the same mathematical structure as the Verbitsky et
al. (2018) model, even though the meaning of some of the
variables will have changed. Specifically, since Eq. (3) is lin-
ear, it can be split into several equations:

ω = ω1+ω2+ . . .+ωn

dω1

dt
= γ11− γ21 (S− S0)− γ3ω1

dω2

dt
= γ12− γ22 (S− S0)− γ3ω2

. . .

dωn
dt
= γ1n− γ2n (S− S0)− γ3ωn.

Each of the above equations may represent different feedback
mechanisms. Therefore our experiments with increased (or
reduced) γ2 may be also understood as experiments with ad-
ditional feedbacks of different nature (γ2 = γ21+γ22+ . . .+

γ2n), though of the same timescale 1/γ3.

4.2 Multi-sinusoid forcing

Thus far we have assumed a single-sinusoid external forc-
ing with an amplitude ε and a period T . When we force our
system with normalized mid-July insolation at 65◦ N (Berger
and Loutre, 1991), this assumption is not valid any longer
because both the amplitudes and the periods of precession

and obliquity are different. Therefore, the hypothesis Eq. (5)
must be rewritten as:

P = ψ [V,a,ε1,T1,ε2,T2] . (16)

Here P is a period of the system response to a specific forc-
ing component (a peak of the response spectrum); index “1”
corresponds to obliquity, and index “2” corresponds to pre-
cession. Taking dimensions of ε1 and T1 as independent di-
mensions and using the π theorem, we obtain:

P1 = T191
[
V,ε1/a,ε1/ε2,T1/T2

]
. (17)

Here P1 is a period of the system response to the obliquity
forcing. Similarly, taking dimensions of ε2 and T2 as inde-
pendent dimensions, and using the π theorem, we have

P2 = T292
[
V,ε2/a,ε1/ε2,T1/T2

]
. (18)

Here P2 is a period of the system response to the preces-
sion forcing. Since in the case of the orbital forcing ε1/ε2
and T1/T2 are invariant, we can apply generalized π theorem
(Sonin, 2004) and to rewrite Eqs. (17) and (18) as

P1 = T191
[
V,ε1/a

]
(19)

P2 = T292
[
V,ε2/a

]
. (20)

It can be seen that Eqs. (19) and (20) are identical to Eq. (7),
and the response periods to obliquity and to precession do
not depend on each other. This result is not by any means
intuitive.

We now repeat the same reasoning for the corresponding
amplitudes of the system response:

Ś1 = ϕ1 (V,a,ε1,P1,ε2,P2) (21)

Ś2 = ϕ2 (V,a,ε1,P1,ε2,P2) (22)

Ś1 = ε
2
1P

2
181 (V,ε1/a,ε1/ε2,P1/P2) (23)

Ś2 = ε
2
2P

2
282 (V,ε2/a,ε1/ε2,P1/P2) . (24)

Though in the case of the orbital forcing ε1/ε2 and T1/T2 are
invariant, P1/P2 is not an invariant (see Fig. 1); therefore

Ś1 = ε
2
1P

2
181 (V,ε1/a,P1/P2) (25)

Ś2 = ε
2
2P

2
282 (V,ε2/a,P1/P2) . (26)

We can see that although periods of the system response to
the precession and obliquity forcings are independent, the
amplitudes of the corresponding variations are interdepen-
dent and thus may deviate from a pure square-period law.
This observation may have an important implication for our
understanding of the paleodata. As we demonstrated before
(Verbitsky et al., 2018), P1/P2 evolves over time, specifically
P1/P2 = 1 for the early Pleistocene due to precession period
doubling and P1/P2 = 4 for the late Pleistocene due to obliq-
uity period doubling. It means that the slope of the spectrum
of the system response may also evolve.
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Introduction of more sinusoids (for example, accounting
for the millennial forcing) makes the situation even more
complex. In such a case, a period of the system response to
a specific forcing component depends on the amplitudes and
the periods of all sinusoids:

P = ψ [V,a,ε1,T1,ε2,T2, . . .εi,Ti . . .] . (27)

Then, for example, P1, the period of the system response to
obliquity forcing, can be presented as

P1 = T191

[
V,
ε1

a
, . . .,

ε1

εi
,
T1

Ti
, . . .

]
, (28)

and corresponding amplitude of the glaciation area response

Ś1 = ϕ1 [V,a,ε1,P1,ε2,P2, . . .εi,Pi . . .] (29)

Ś1 = ε
2
1P

2
181

[
V,
ε1

a
, . . .,

ε1

εi
,
P1

Pi
, . . .

]
. (30)

Equations (28) and (30) show that, generally speaking, ev-
ery peak P and corresponding amplitude Ś of the system re-
sponse depend on each forcing sinusoid. Such a dependence
may break the scale invariance we discussed earlier. For ex-
ample, we have demonstrated in our previous study (Verbit-
sky et al., 2019a) that introduction of the millennial variabil-
ity of significant amplitude (i.e., ε1/εi→ 0) may disrupt the
response of the system to the orbital forcing and essentially
reduce the slope βa. The empirical energy density spectrum
of Huybers and Curry (2006) has a slope of B ≈ 2 in the or-
bital domain. Since the energy density slope B relates to the
fluctuation amplitude slope βa as B = 2βa+ 1, B ≈ 2 corre-
sponds to βa = 0.5< 2. We may therefore speculate that the
observed spectrum of the climate variability could be signif-
icantly influenced by the millennial forcing propagated into
the orbital domain.

4.3 How general is the property of scale invariance?

It is apparent that not every dynamical model has the prop-
erty of scale invariance, which is encoded in its dynamical
equations. As an illustration, let us consider the van der Pol
oscillator. It was previously suggested as a minimal model
capturing ice-age dynamics (Crucifix, 2012).

dx
dt
=
−y+β + γF

τ
(31)

dy
dt
=

−α
(
y3

3 − y− x
)

τ
(32)

Here all variables and parameters, except τ , are dimension-
less; τ is measured in units of time. Variable x is thought to
represent the global ice volume, and variable y makes the
“rest-of-the climate” response. Using the same π -theorem
technique, let us determine the period P and the amplitude

x′ of the system response to the external forcing F of the
period T .

P = ψ (α,β,γ,τ,T ) (33)
P = T9 (α,β,γ,τ/T ) (34)

Since α, β, and γ are constants,

P = T9 (τ/T ) . (35)

Similarly,

x′ = ϕ (α,β,γ,τ,P ) (36)
x′ =8 (α,β,γ,τ/P )=8 (τ/P ) . (37)

It means that the amplitudes of forced fluctuations in the van
der Pol model are not necessarily scale invariant. We have
tested this conclusion experimentally for τ = 36.2 kyr and a
forcing period T ranging from 5 to 100 kyr. The response
shows slope breaks near approximately 90 and 50 kyr, which
are clearly related to the auto-oscillation of the 100 kyr dom-
inant period and its 50 kyr overtone.

Therefore, in a search for the most adequate ice-age
physics, it would indeed be useful to see whether more
sophisticated ice sheet–ocean–atmosphere models have the
property of scale invariance. We suspect that potential uni-
versality of this property may stem from the universality of
the Eq. (1). Equation (1) represents the global ice volume bal-
ance and simply says that changes in the ice volume are equal
to the mass influx to the ice-sheet surface. This statement is
valid for each and every climate model of any complexity.
Therefore, if a model can be diagnosed with a single dimen-
sionless number similar to the V number that would effec-
tively capture most of the climate dynamics, then the scale
invariance of the glaciation area variations (in square meters)
can be reduced from the simple observation that it depends
on the mass influx to its surface (in meters per second) and
the periodicity of the mass influx variation (in seconds). This
might not be too difficult to verify with an adequate set of
experiments, but we must obviously leave this task to the sci-
entists who know and develop these models.

5 Conclusions

Twenty-seven years ago, Saltzman and Verbitsky (1993) dis-
cussed their model of 18 parameters, nine of which were
physically unconstrained (i.e., free parameters) and formu-
lated a challenge “to account for as much of the variance
with fewer free parameters. A challenge is thus posed to our-
selves and other theoretical paleoclimatologists to construct
a more parsimonious model in this regard that can super-
sede our present effort.” We may now conclude that this chal-
lenge has been met. All parameters in our model (Verbitsky
et al., 2018) are physically constrained. Moreover, dimen-
sional analysis reveals that there are only two factors that de-
fine most of the ice-age dynamics: (a) a balance between in-
tensities of climate positive and ice sheet negative feedbacks,
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51 = V ; (b) the period, T , and the amplitude of the external
forcing, ε, (specifically, a particular proportion between the
external, e.g., orbital, and terrestrial ice sheet mass balance
components, 52 = ε/a).

The analysis indicates that the amplitudes of glacial area
variations and of climate temperature are scale invariant with
a frequency slope of approximately 2. The property of scale
invariance does not depend on the physical nature of the un-
derlying positive and negative feedbacks incorporated by the
system. It thus turns out to be one of the most fundamental
properties of the Pleistocene climate.

Retrospectively, we could have inferred scale invariance
from the mere assumption that the behavior of the continen-
tal glacial area (measured in square meters) depends on the
mass influx to its surface (in meters per second) and the pe-
riodicity of the mass influx variation (in seconds), but per-
haps these assumptions are too simple to be convincing. In
our study, we have chosen a bit more sophisticated but more
credible approach. We derived a dynamical model from the
scaled conservation equations of viscous non-Newtonian ice
combined with an equation describing the evolution of the
climate temperature. We observed that most of the dynamical
system behavior can be explained by a balance between posi-
tive and negative feedbacks. This observation, finally, illumi-
nated the crucial role of the mass influx and its periodicity,
making application of the π theorem effective and definitive.

Certainly, we cannot claim to have a full picture of the
mechanisms of ice ages, but if ice age physics are well cap-
tured by the mathematical structure that we have obtained,
then this scale invariance linking response amplitudes and
periods applies. We further suggest that a model that would
indeed be a bit different than the Verbitsky et al. (2018)
model (because it includes some other important, may be
nonlinear, mechanisms) might still retain an important prop-
erty that we have discovered: there is a connection between
the sensitivity of the fixed point (since the V number is in-
deed constructed by consideration of the sensitivity of the
fixed point) and a scale invariance linking period and am-
plitude of response. This seems to be the fundamental pro-
posal, for which we welcome challengers equipped with big-
ger models.

Code and data availability. The MATLAB R2015b code and
data to calculate model response to periodical forcing as presented
in Fig. 2 are available at https://doi.org/10.5281/zenodo.3473957
(Verbitsky et al., 2019b).
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