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Abstract. The changes in the El Niño–Southern Oscillation (ENSO) phenomenon and its precipitation-related
teleconnections over the globe under climate change are investigated in the Community Earth System Model
Large Ensemble from 1950 to 2100. For the investigation, a recently developed ensemble-based method, the
snapshot empirical orthogonal function (SEOF) analysis, is used. The instantaneous ENSO pattern is defined as
the leading mode of the SEOF analysis carried out at a given time instant over the ensemble. The corresponding
principal components (PC1s) characterize the ENSO phases. By considering sea surface temperature (SST)
regression maps, we find that the largest changes in the typical amplitude of SST fluctuations occur in the
June–July–August–September (JJAS) season, in the Niño3–Niño3.4 (5◦ N–5◦ S, 170–90◦W; NOAA Climate
Prediction Center) region, and the western part of the Pacific Ocean; however, the increase is also considerable
along the Equator in December–January–February (DJF). The Niño3 amplitude also shows an increase of about
20 % and 10 % in JJAS and DJF, respectively. The strength of the precipitation-related teleconnections of the
ENSO is found to be nonstationary, as well. For example, the anticorrelation with precipitation in Australia in
JJAS and the positive correlation in central and northern Africa in DJF are predicted to be more pronounced by
the end of the 21th century. Half-year-lagged correlations, aiming to predict precipitation conditions from ENSO
phases, are also studied. The Australian and Indonesian precipitation and that of the eastern part of Africa in both
JJAS and DJF seem to be well predictable based on the ENSO phase, while the southern Indian precipitation
relates to the half-year previous ENSO phase only in DJF. The strength of these connections increases, especially
from the African region to the Arabian Peninsula.

1 Introduction

The El Niño–Southern Oscillation (ENSO) is recognized as
the dominant interannual fluctuation in the climate system
(see, e.g., Bjerknes, 1969; Rasmusson and Carpenter, 1982;
Neelin et al., 1998; Philander, 1990; Timmermann et al.,
2018). This naturally occurring fluctuation originates in the
tropical Pacific region and affects weather and climate world-
wide. The warm (cold) phase of the ENSO, called El Niño
(La Niña), is associated with sea surface temperature that

is above (below) average in the central and eastern equato-
rial parts of the Pacific Ocean. The ENSO cycle also has
several regional impacts on precipitation and temperature
over the globe. For example, during El Niño episodes, Aus-
tralia and Indonesia in both December–February and June–
September and India and the equatorial band in Africa in
December–February experience a reduced amount of rain-
fall, while Peru and Chile have wetter than normal weather
in July–September (see, e.g., Diaz et al., 2001; Yang and Del-
Sole, 2012; Yeh et al., 2018).
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Therefore, if the ENSO changes, it may have large climatic
impacts (Trenberth et al., 1998; Wallace et al., 1998; Glantz,
2001; Trenberth et al., 2002; Guilyardi et al., 2009; Collins
et al., 2010; Vecchi and Wittenberg, 2010; Cai et al., 2015).
Consequently, there is an open and crucial question: how
will ENSO change in the changing climate? There have been
many studies aiming to answer this question; however, the
model simulations of future ENSO changes diverge widely
among climate models (Yeh and Kirtman, 2007; Stevenson,
2012; Christensen et al., 2013; Bellenger et al., 2014).

Most of the studies agree on using temporal statistics
(including means, variances, correlations, etc.) applied to a
time-dependent dynamical system, i.e., in our changing cli-
mate. However, a correct application of temporal statistics
requires stationarity, as argued in Drótos et al. (2015, 2016),
which does not hold in a changing climate. The nonstationar-
ity of the climate system naturally appears in the simulations
generated for climate projections by general circulation mod-
els, and it is especially important in the analysis of telecon-
nections (Herein et al., 2016, 2017; Roy et al., 2019; Chung
et al., 2019).

To avoid the abovementioned discrepancy of temporal
methods, in this study we present an ensemble-based anal-
ysis. In this approach the relevant quantities of the climate
system are the statistics taken at any given time instant over
an ensemble of possible climate realizations. We note that a
“time instant” can also mean time averages over certain pe-
riods, because the snapshot framework is also applicable for
quantities evaluated over time intervals (Drótos et al., 2015).
These ensembles typically evolve from slightly different ini-
tial conditions. In the context of climate, this kind of en-
sembles was used, e.g., for the investigation of the forced
response and associated uncertainties arising from internal
variability (Deser et al., 2012; Daron and Stainforth, 2013;
Kay et al., 2015; Suarez-Gutierrez et al., 2018). They are also
utilized for specific topics, e.g., to estimate how many ensem-
ble members are needed to detect a statistically significant
strengthening of the Northern Hemisphere polar vortex due
to volcanic eruptions (Bittner et al., 2016), to reveal that the
more rapidly warming surface in climate models compared to
observations can be caused by internal variability in the top-
of-atmosphere energy imbalance (Hedemann et al., 2017), to
establish that internal variability in the ocean carbon uptake
is as large as the forced temporal variability (Li and Ilyina,
2018), and to verify that the internal variability has a domi-
nant role in the strengthening of the Pacific Walker circula-
tion (Chung et al., 2019). Large ensembles prove to be useful
also in revealing the deviations and their causes between the
results of traditional single-time series statistics and ensem-
ble statistics (Herein et al., 2016) and in studying the North
Atlantic Oscillation (NAO) teleconnections (Herein et al.,
2017). Large ensemble simulations were also investigated in
low-dimensional systems (see, e.g., Bódai et al., 2011; Bó-
dai and Tél, 2012; Drótos et al., 2015). The mathematical
concept that provides the appropriate framework is that of

snapshot (Romeiras et al., 1990; Drótos et al., 2015) or pull-
back attractors (Arnold, 1998; Ghil et al., 2008; Chekroun
et al., 2011). The applicability of this framework was also
established by laboratory experiments (Vincze et al., 2017).
The application of ensembles in the snapshot framework is
overviewed in Tél et al. (2020).

In the context of climate simulations, this framework im-
plies that a climate simulation with any initial condition after
a transient time (during which it forgets its initial condition)
converges to the snapshot attractor, which describes the “per-
mitted” climate states under the external forcing history up to
that time, such as CO2 concentration, etc. Furthermore, start-
ing a sufficiently large ensemble of climate simulations with
slightly different initial conditions has been proven to cor-
rectly cover the distribution of the possible climate states of
the snapshot attractor after the transient time at any time in-
stant; therefore, from that time on the ensemble can be used
to characterize the potential states at each time instant (Dró-
tos et al., 2015; Herein et al., 2016; Drótos et al., 2017).
This ensemble can be also called parallel climate realizations
(Herein et al., 2017; Tél et al., 2020). We note that it is re-
markable that Leith (1978) came up with a similar idea as
early as in 1978; however, Leith’s work has not spread widely
in the climate community.

The snapshot framework, which can be applied numeri-
cally to large ensembles, also provides a mathematically cor-
rect method to separate the effect of internal variability from
the forced response under climate change (see, e.g., Drótos
et al., 2015) via, e.g., the ensemble standard deviation and
the ensemble mean, respectively. Naturally, due to the time-
dependence of the forcing, i.e., when the climate changes, the
ensemble also undergoes a change in time, and as a conse-
quence, both the mean state (average values) and the internal
variability in the climate changes with time.

The snapshot framework can also be applied to phenom-
ena analyzed by the widely used empirical orthogonal func-
tion (EOF) analysis. Here we use a recently developed ap-
proach called the snapshot EOF analysis (SEOF) to reveal the
potential changes in the ENSO and its teleconnections. This
method was introduced originally in Haszpra et al. (2020).
It computes instantaneous SEOF loading patterns over the
ensemble members at any given time instant, rather than
with respect to the time dimension of any single ensemble
member. Hence it is also capable of monitoring the time-
dependence of the SEOF pattern. We note that a similar
method (called EOF-E) has also been developed recently
in Maher et al. (2018); however, it differs from our SEOF
method as it computes the EOF field for a given year par-
tially over the ensemble dimension but constructs the sam-
pling set from the different ensemble members and also from
the different monthly fields of the given year with the sea-
sonal mean signal previously removed.

This study focuses on the time evolution of the ENSO
pattern and ENSO amplitude under a changing climate. An-
other crucial question is how ENSO teleconnections will be
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modified in the same time. Many studies have addressed this
question and reported that the ENSO teleconnections may
change under a changing climate (Krishna Kumar et al.,
1999; Yeh and Kirtman, 2007; Davey et al., 2014; Ramu
et al., 2018; Yeh et al., 2018). However, most of the stud-
ies use the before-mentioned temporal statistic approach to
get the relevant correlation coefficients of teleconnections,
which introduces some subjectivity due to the choice of the
time window over which statistics are taken. This subjectiv-
ity was investigated, e.g., in Herein et al. (2017), in which it
was demonstrated that the traditional evaluation of correla-
tion coefficients, carried out via temporal statistics, provides
incorrect or misleading results. Thus we emphasize that it is
important to evaluate correlation coefficients and any other
statistics with respect to the ensemble using the snapshot
framework.

The SEOF method, computing all relevant quantities at
single time instants, via the computed principal compo-
nents (PC1s) of the leading SEOF mode used as certain
ENSO indices to characterize the ENSO phases, also allows
us to investigate ENSO teleconnections based only on instan-
taneous ensemble statistics. Since this can be done at any
time instant, it also enables us to monitor the temporal evo-
lution of the strength of the teleconnection during a climate
change.

We also compute instantaneous ensemble-based correla-
tion coefficients to characterize the connection of the ENSO
phases with precipitation over the globe at each year and in-
vestigate the trends over time in the obtained correlation co-
efficient maps. Lagged correlations between the two quan-
tities can also be studied this way, providing the possibil-
ity of predicting precipitation based on PC1. We focus on
the December–January–February (DJF) and the June–July–
August–September (JJAS) season (for details see Sect. 2).
In this way, in contrast to Maher et al. (2018), which uses
all monthly data from a year, the seasonal differences in the
phenomenon can also be investigated. We note that the SEOF
method or any similar technique (e.g., EOF-E) can be ap-
plied successfully, providing robust statistics, only for large
ensembles. Here, we choose to investigate the ENSO phe-
nomenon in the large ensemble of one of the state-of-the-
art climate models, in the Community Earth System Model
Large Ensemble Project (CESM-LE) (Kay et al., 2015). We
emphasize that, to our knowledge, this is the first time that the
SEOF analysis using SST data was utilized to reveal changes
in ENSO teleconnections.

The paper is organized as follows. Section 2 provides
a brief overview of CESM-LE data and the SEOF analy-
sis. It also includes a discussion on the capability of snap-
shot frameworks in general compared to the traditional sin-
gle time series-based temporal analysis and the interpreta-
tion of the meaning of their results. Section 3 presents the
ensemble-based sea surface temperature regression maps as
ENSO patterns, the ENSO amplitude, and their changes over
time due to climate change. The precipitation-related tele-

connections of the ENSO phenomenon and the alterations
in their strength are also discussed in the section. Section 4
summarizes the main results and conclusions of the work.

2 Data and methods

2.1 Data

For our study we use the meteorological fields of the CESM-
LE produced by the fully coupled CESM1 used in CMIP5
(Kay et al., 2015). Between 1920 and 2005 the CESM-LE
simulations follow the CMIP5 historical experimental design
(Taylor et al., 2012; Lamarque et al., 2010), while after 2005
to 2100 they follow the RCP8.5 scenario (Van Vuuren et al.,
2011). In the study we utilize sea surface temperature (SST)
and total precipitation (PRECT) fields with a horizontal res-
olution of 1◦× 1◦ and 1.25◦× 0.942◦, respectively. Due to
the small systematic difference between the members run at
the National Center for Atmospheric Research (NCAR) and
at the Toronto supercomputer (CESM-LE, 2016) we utilize
only the members from the NCAR simulations. Taking into
consideration the convergence time of the simulations, we
only deal with data from 1950 onward.

2.2 Studying ENSO and its teleconnections in the
snapshot framework

Here, we study ENSO by evaluating the variability in the
SST field over the ensemble members at each time instant in
the Pacific using the SEOF method. It is based on the region
of (30◦ S, 30◦ N)× (100◦ E, 70◦W), which is also chosen in
Maher et al. (2018) for their EOF-E analysis. To eliminate the
distorting impact of the regular latitude–longitude grid in the
EOF analysis, the SST fields are weighted by the square root
of the cosine of the latitude, following Thompson and Wal-
lace (2000). We consider the instantaneous ensemble-based
leading SEOF mode (by which we mean the normalized
eigenvectors associated with the largest eigenvalue of the co-
variance matrix of the SST anomaly fields) as the ENSO
loading pattern and the phase of the phenomenon in each
member as the corresponding principal component (PC1).
With the sign of the SEOF patterns which shall be used
in Fig. 1, PC1> 0 (PC1< 0) corresponds to anomalously
warm (cold) events associated with above (below) the en-
semble average SST in the central and east-central equato-
rial Pacific Ocean. As in Thompson and Wallace (2000), not
the normalized EOF patterns, but rather the SST regression
maps are shown, computed by regressing the unweighted
SST anomaly fields onto the standardized PC1 data. There-
fore, the values appearing on the regression maps charac-
terize typical amplitudes in the variability in the SST. The
instantaneous strength of ENSO is computed as the ensem-
ble standard deviation of the PC1s of the given time instant,
as the snapshot counterpart of the temporal standard devia-
tion of the PC1, used as a common practice to represent the

www.earth-syst-dynam.net/11/267/2020/ Earth Syst. Dynam., 11, 267–280, 2020



270 T. Haszpra et al.: Investigating ENSO under climate change in an ensemble view

Figure 1. Ensemble-based SST regression maps [in degrees Celsius] for years given in the title of the panel for (a–c) JJAS and (d–f) DJF.
The explained variance in the first SEOF mode is also displayed in the title of the panels. Dots represent geographical locations where the
regression coefficient is significant at the 95 % level. For better visibility, only every fourth grid point is dotted.

strength of an oscillation in traditional EOF analysis (Mona-
han and Dai, 2004; Maher et al., 2018). For comparison, we
also analyze the time evolution of the ensemble-based ENSO
Niño3 amplitude defined by the ensemble standard deviation
of Niño3 index in the (5◦ S, 5◦ N)× (150, 90◦W) Niño3 re-
gion.

Note that PC1 is actually an index for the ENSO phase.
It is found to be closely related to the standard Niño3 index,
with a correlation coefficient of 0.98 (Ashok et al., 2007),
which confirms that the first mode of EOF represents the con-
ventional ENSO well. It has been used in this way in other
studies as well; see, e.g., Diaz et al. (2001) who carried out
traditional EOF analysis using a slightly smaller Pacific re-
gion. As an index, its main use is a standardized indication
for the state of the remote phenomena related to ENSO. Even
though more complex indices exist nowadays for the charac-
terization of ENSO, created, e.g., by the combination of PC1
and PC2, such as the ones in Takahashi et al. (2011), we
choose PC1 to provide a simple and easy-to-follow exam-
ple, illustrating the applicability and advantages of the SEOF
analysis.

For characterizing such teleconnections, an instantaneous
ensemble-based correlation coefficient can be determined be-
tween the PC1 and PRECT data of the ensemble members
at each time instant and for each grid point. As ENSO has
its maximum around boreal winter, which is traditionally de-
fined as DJF, we analyze the DJF ENSO pattern and ENSO
teleconnections in the paper. In order to investigate the possi-
bility of predicting precipitation half a year in advance based

on PC1, we calculate lagged correlations beyond instanta-
neous ones. The relationship between ENSO and the South
Asian monsoon is believed to be one of the most important
teleconnection phenomena and is traditionally investigated
using JJAS (see, e.g., Krishna Kumar et al., 1999; Ashok
et al., 2007; Srivastava et al., 2019), and western Africa
also receives the major proportion of its annual rainfall in
JJAS (Srivastava et al., 2019); therefore, we utilize both DJF-
mean and JJAS-mean data in order to reveal simultaneous
and lagged connections and to correlate the JJAS PC1 with
the JJAS PRECT, the DJF PC1 with the DJF PRECT, the
DJF PC1 with the JJAS PRECT, and the JJAS PC1 with
the DJF PRECT over the ensemble. The choice of DJF and
JJAS seasons is also used in Wu et al. (2012) for studying
the ENSO influences on Indian summer monsoon. The in-
vestigation of lagged correlations opens up the possibility of
studying the predictability of the amount of precipitation in
different regions based on the PC1.

2.3 Comparing the capabilities of the snapshot and
traditional methods

To better understand the facilities of the snapshot methods
in general, it is worth giving an overview of the advantages
and limitations of both the snapshot methods and traditional
temporal ones. When only single time series are available,
such as measurements or single time series of model simu-
lations, one has to use the traditional temporal methods of
time series analysis to investigate a phenomenon. For exam-
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ple, in the case of ENSO, when examining its characteristics
by EOF analysis, used in this study as well, it means that for
the time period of the analysis a single EOF loading pattern
is obtained, i.e., the spatial pattern of the oscillation must be
assumed to be constant for the given time period. The phases
of this “standing” oscillation over time are then provided by
the corresponding PC1s, and the strength of ENSO telecon-
nections in the studied time period can be characterized at
every geographical location by a single correlation coeffi-
cient between the PC1 time series and the local time series of
the studied quantity. However, during this time period (e.g.,
within 30 or 100 years) climate changes (excluding the non-
realistic case of stationary forcing). For example, in the case
of the CESM-LE climate change indeed manifests in a con-
siderable global surface temperature increase on a decadal
timescale between 1950 and 2100 (Kay et al., 2015). There-
fore, it can be neither presupposed that the pattern of the
ENSO or the strength of its teleconnections remain constant
during climate change nor assumed that a single oscillation
pattern or correlation coefficient can faithfully characterize
the conditions of several years.

A changing climate may manifest even in local regime
shifts and appearance of tipping cascades in such a coupled
system (Klose et al., 2019). For a demonstration of the pos-
sibility of such cascading events in the climate system in a
conceptual model of a coupled North Atlantic Ocean–ENSO
system, see Dekker et al. (2018). These transitions may cause
qualitative changes also in local dynamics and in the connec-
tions of the climate system. Climate change can also result
in chaotic synchronization between certain regions which
behave as chaotic oscillators (Duane, 1997), e.g., implying
a change in the relationship between the Atlantic and Pa-
cific sectors (Duane and Tribbia, 2001). As another exam-
ple, Falasca et al. (2019) showed both in the CESM-LE and
in reanalysis data that the connection between the equato-
rial Atlantic region and the ENSO may exist only in certain
decades, possibly because of chaotic synchronization.

Naturally, the analyzed time period can be divided
into smaller time windows, and then some kind of time-
dependence of the oscillation and teleconnections can be
studied. However, if the forcing is nonstationary, the climate
can change even within shorter time periods. The smaller the
time window, the less the climate is expected to change but
meanwhile, the less robust the calculated statistics will be
due to the smaller number of temporal data points. Regard-
ing the case of changing climate, the optimal choice would
obviously be to choose a series of time windows of length
of one data point, within which the climate evidently can-
not change. This is exactly what the snapshot methods do
by calculating statistics at single time instants; however, an
ensemble is needed for this purpose. Therefore, the methods
of the snapshot framework operate across the ensemble di-
mension of climate realizations at single time instants and
provide measures and statistics that characterize only the in-
stantaneous potential states of the climate system without a

direct impact of previous or future climate states on the value
of the statistics, in contrast to results from traditional time se-
ries analysis operating along the time dimension. For exam-
ple, the most known ensemble statistics, the ensemble mean
and ensemble standard deviation, describe the mean state and
the strength of the internal variability in the possibilities per-
mitted by the instantaneous climate, respectively, at the cho-
sen time instant under the external forcing history up to that
time. Analogously, an instantaneous ensemble-based SEOF
loading pattern represents the spatial structure of an oscilla-
tion that characterizes the potential variability in the climate
states of the given time instant, and the corresponding PC1s
reveal the phases in which the ensemble members are in that
very moment.

A similar overview, comparing the results derived from
snapshot methods and time series analysis, can be found in
Herein et al. (2017) and Bódai et al. (2020) for the exam-
ple of the North Atlantic Oscillation teleconnections using a
station-based NAO index and the ENSO phenomenon using
the Niño3 and Southern Oscillation (SOI) indices, respec-
tively. The single time series results were shown to strongly
differ from the snapshot ones. These papers also illustrate by
numerical examples that the choice of the time window may
have a considerable effect on the statistical measures in the
traditional approach, while this is not a problem when using
the snapshot framework.

As an obvious limitation, to take advantage of the meth-
ods within the snapshot framework to provide a mathemati-
cally correct way to describe the instantaneous statistics and
characteristics of the potential climate states under the ex-
ternal forcing history up to that time, an ensemble of cli-
mate realizations is needed. The more reliable and robust the
statistics aimed to be obtained are, the larger the required en-
sembles are. Note that the number of temporal data points is
also an issue in the traditional time series analysis as well.
We also feel important to repeat here that the desirable tools
of a traditional time series analysis give robust and unbi-
ased results only if the underlying statistics can be approx-
imated well as stationary. Furthermore, temporal autocorre-
lation may seriously reduce the effective sample size of the
traditional methodology; with a 3-year autocorrelation, the
effective length of a 150-year time series is practically less
than 50 data points.

Most often, an ensemble is produced by a climate model;
however, they may also be accessible in experiments. For ex-
ample, they proved to be useful in laboratory experiments
aiming to study the effect of climate change on midlatitude
atmospheric circulation (Vincze et al., 2017). Obviously, the
obtained results are constrained by the climate model or the
capability of the experimental setup, while the tools of time
series analysis can be applied also to historical measurements
or reanalysis data, i.e., for cases when only single time series
exist due to the fact of having only one Earth history.
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Figure 2. The slope of the linear fit (10−3 ◦C yr−1) at each grid point of the (a) JJAS and (b) DJF regression maps from 1950 to 2100. Dots
represent geographical locations where the trend is significant at the 95 % level. In addition, (i) where the trend is positive and the regression
coefficients are positive and significant at the 95 % level in the temporal mean, “+” signs are displayed, (ii) where the trend is positive and
the regression coefficients are negative and significant at the 95 % level in the temporal mean, “4” signs are displayed, (iii) where the trend
is negative and the regression coefficients are positive and significant at the 95 % level in the temporal mean, “O” signs are displayed, and
(iv) where the trend is negative and the regression coefficients are negative and significant at the 95 % level in the temporal mean, “•” signs
are displayed, respectively. For better visibility, the significance and direction of the trend is indicated at only every fourth grid point.

3 Results

3.1 Changes in the ENSO pattern and amplitude

For a first impression of the SEOF analysis, the instantaneous
ensemble-based regression maps of the first SEOF mode for
the SST in the Pacific region for the JJAS period and DJF
period are shown in Fig. 1a–c and d–f, respectively. As ex-
pected from observation-based data (see, e.g., Kirtman and
Shukla, 2000), the typical amplitudes of the SST anomaly
values across the ensemble members at the equatorial Pa-
cific are somewhat larger in DJF than in JJAS. The shape
of the pattern clearly changes somewhat over time, and the
explained variance in the first SEOF mode also varies.

To determine whether the observed alterations are due to
fluctuations because of the finite number of ensemble mem-
bers or the consequences of the changing climate, a linear
fit over time is performed on the ensemble-based regression
maps at each grid point from 1950 to 2100 (Fig. 2). The ap-
plicability of linear fit to the time series of regression co-
efficients is checked at two random grid points in the re-
gion of strong positive trends and two other grid points in
the region of negative trends in Fig. 2 for both seasons (see
Fig. S1 in the Supplement), and the trend of the curves is
found to be well approximated by linear regression. In the
regression maps for JJAS (Fig. 2a) a positive trend with (1–
3)×10−3 ◦C yr−1 can be detected in the Niño3 and Niño3.4
region, while close to Indonesia and Australia a clear nega-
tive trend with the same magnitude appears. It corresponds
to an increase of 0.15 to 0.45 ◦C in the SST variability, in
150 years (from 1950 to 2100), which is a considerable
change compared to the magnitude of 0.1–1 ◦C in the SST
variability in Fig. 1. For DJF (Fig. 2b) a somewhat narrower
band with slightly weaker increase of (0.5–2)×10−3 ◦C yr−1

can be seen all along the Equator in the Pacific Ocean and

negative trends of a similar magnitude appear near Australia
and at the western coast of South America. Similar trends in
the annual ENSO pattern were pointed out in Maher et al.
(2018) by EOF-E analysis mentioned in the Introduction,
however, Fig. 2 draws attention to the fact that these pat-
terns also have seasonal dependence. Ensemble-based instan-
taneous regression maps present typical values of the am-
plitude of the fluctuations directly related to the given EOF
mode of variability at each grid point, which in the case of
EOF1 has the strongest relationship with ENSO. The tempo-
ral changes in the regression maps are then easy to interpret
intuitively; they show the changes in the fluctuation ampli-
tudes, i.e., changes in the typical SST anomalies bound to
the given mode at each grid point and potential shifting in
the pattern during climate change as well. Nevertheless, it
is also worth studying another representation of the ENSO
pattern, namely the pattern which is separated from the am-
plitude of the phenomenon. The time series of this separated
pattern, represented by the loading pattern of the SEOF anal-
ysis, and the changes in them are shown in Figs. S3 and S4,
respectively. The temporal changes in these normalized pat-
terns show the alterations in the relative importance of differ-
ent regions from the point of view of the given mode. Their
patterns in Fig. S4 are similar to the ones in Fig. 2; however,
in contrast to them, no dominant maximum can be seen in
the Niño3 region for DJF. Furthermore, while the amplitude
increase in the Niño3 region in Fig. 2a in JJAS proves to be
more pronounced than the decrease in the western part of the
equatorial Pacific, Fig. S4 shows that the reduction of the rel-
ative importance of the latter is greater than the former one.

Another particularly important feature of the ENSO phe-
nomenon is the ENSO amplitude, which shows a large di-
versity in different climate projections (Yeh and Kirtman,
2007; Collins et al., 2010; Chen et al., 2015). Therefore, be-
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Figure 3. (a, d) Ensemble-based ENSO strength as the ensemble standard deviation of the PC1 (σPC), (b, e) the explained variance in the
first SEOF mode, and (c, f) Niño3 amplitude as the area-mean (thick line) ensemble standard deviation of SST in the Niño3 region and its
area standard deviation (grey band) in (a–c) JJAS and (d–f) DJF. Linear fits are indicated by dashed lines; legends indicate the slope of the
linear fits with 95 % confidence intervals.

sides the exploration of the changes in the ENSO pattern,
we also quantify the potential changes in the ensemble-based
instantaneous ENSO strength (the ensemble standard devia-
tion of the PC1, σPC), and the change in the explained vari-
ance in the first SEOF mode (Fig. 3a, d, and b, e). Further-
more, the ensemble-based analog of a traditional amplitude
of the ENSO phenomenon, namely the Niño3 amplitude, is
also studied (Fig. 3c and f). The value of σPC is much smaller
in JJAS (Fig. 3a) than in DJF (Fig. 3d), and Fig. 3b and d
also show that the explained variance in the SST variability
by the first SEOF mode is about 15 % greater in DJF than
in JJAS. A systematic increase is found in all three quanti-
ties both for JJAS and DJF. The increase in JJAS is around
20 % for the σPC (Fig. 3a), the explained variance (Fig. 3b),
as well as the ENSO amplitude (Fig. 3c), while the increase
in DJF is somewhat lower, approximately 5 %–15 % for the
three quantities. The larger values of the explained variance
mean that by 2100 the oscillation associated with the first
mode is going to be responsible for a much larger fraction
of the variability in the SST fields. The increasing values
in the explained variance in the first SEOF mode are found
to be compensated for by the generally slightly decreasing
trends appearing in the explained variance in higher-order
modes (see Fig. S2). In JJAS, the second mode contributes
the most to the decrease by 2.4 %, while in DJF, for which
Fig. 3e shows a less pronounced increase for the first mode,
the explained variance in the second mode is approximately
constant, and the compensating decrease appears in the ex-
plained variance in the higher-order modes. For more details,

see Fig. S2. The approximately 20 % increase in the Niño3
amplitude is in fairly good agreement with the study of Ma-
her et al. (2018). It is comparable with the approximately
10 % increase within 100 years in Zheng et al. (2018) that
was found for the CESM-LE for the Representative Con-
centration Pathway scenario with radiative forcing value of
8.5 W m−2 in the year 2100 (RCP8.5) using sliding win-
dows temporal statistics. This result reveals that the forced
response of the ENSO amplitude under climate change is
positive. Obviously this finding is valid for the CESM-LE
only, while other models may behave differently regarding
the ENSO amplitude (Yeh and Kirtman, 2007; Kim et al.,
2014; Chen et al., 2015). We mention that the first ensemble-
based study (which investigated several large ensembles) re-
ported that an increase or zero trend is likely regarding the
Niño3 amplitude change (Maher et al., 2018).

3.2 Changes in ENSO’s teleconnections

To study the potential changes in the ENSO-related precip-
itation events over time, instantaneous ensemble-based cor-
relation coefficients (r) between the PC1 and the total pre-
cipitation PRECT at each grid point are determined for both
zero-lag and half-year-lagged PRECT data.

In Fig. 4 these r maps are presented. Four different com-
binations of PC1 and PRECT correlations are analyzed. The
simultaneous (zero lag) correlation between the JJAS data in
Fig. 4a–c shows that there are places where the correlation
is remarkably negative, indicating dryer conditions during
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Figure 4. Ensemble-based correlation coefficient r maps for the (a–c) JJAS PC1 and JJAS PRECT, (d–f) DJF PC1 and DJF PRECT, (g–
i) DJF PC1 and JJAS PRECT, and (j–l) JJAS PC1 and DJF PRECT. Specific years are indicated in the panels. Dots represent geographical
locations where the correlation coefficient is significant at the 95 % level. For better visibility, only every fourth grid point is dotted.
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Figure 5. The slope of the linear fits (10−3 yr−1) at each grid point for the correlation coefficient r for the (a) JJAS PC1 and JJAS PRECT,
(b) DJF PC1 and DJF PRECT, (c) DJF PC1 and JJAS PRECT, and (d) JJAS PC1 and DJF PRECT. Dots represent geographical locations
where the trend is significant at the 95 % level. In addition, (i) where the trend is positive and the correlation coefficients are positive and
significant at the 95 % level in the temporal mean, “+” signs are displayed, (ii) where the trend is positive and the correlation coefficients are
negative and significant at the 95 % level in the temporal mean, “4” signs are displayed, (iii) where the trend is negative and the correlation
coefficients are positive and significant at the 95 % level in the temporal mean, “O” signs are displayed, and (iv) where the trend is negative
and the correlation coefficients are negative and significant at the 95 % level in the temporal mean, “•” signs are displayed, respectively. For
better visibility, the significance and direction of the trend is indicated at only every fourth grid point.

warm events and wetter weather during cold episodes. It is
typically observable for Indonesia and Australia, r ≈ (−0.5)
– (−0.8), eastern Africa, r ≈ (−0.4) – (−0.6), Central Amer-
ica, r ≈ (−0.4) – (−0.6), the northern part of South Amer-
ica, r ≈ (−0.4) – (−0.6), and southern and western parts of
India, r ≈−0.4. At the same time positive correlations, in-
dicating more than average precipitation during El Niño and
less than average for La Niña, can be seen for northern Africa
(r ≈ 0.4) and the west coast of the United States (r ≈ 0.3–
0.6). The above-presented picture is roughly consistent with
observation-based investigations, see, e.g., Diaz et al. (2001).

It is worth assessing other variations in PC1 and PRECT
correlations. The zero-lag correlation between DJF PC1 and
DJF PRECT can be seen in Fig. 4d–f. The anticorrelation
with r ≈ (−0.4) – (−0.8) for southern India, Indonesia, and
Australia still holds, as well as the positive correlation for the
west coast of the USA, while the eastern African correlation
changes sign. In general, the DJF correlation patterns are also
fairly close to the observation-based ones, which were re-
ported, e.g., in Diaz et al. (2001), Yang and DelSole (2012),
and Yeh et al. (2018).

The role of the lagged correlations is also a relevant is-
sue. It is known that lagged correlation is especially essen-
tial, e.g., for the Indian summer monsoon, due to the poten-
tial monsoon forecasting (Wu et al., 2012; Johnson et al.,
2017; Kucharski and Abid, 2017). Therefore, we construct
the ensemble-based lagged correlation maps using the DJF
PC1 and JJAS PRECT correlation (Fig. 4g–i). The negative
correlation appearing in observations for Indian JJAS precip-
itation with DJF ENSO phase (Wu et al., 2012) seems to be
quite weak in CESM-LE; only a part of southern India has
some anticorrelation. This means that in CESM-LE the In-
dian summer monsoon does not seem to be predictable by the
DJF PC1 of the ENSO. In contrast to this, as in the previous
cases, the amount of JJAS Indonesian and Australian precip-
itation shows a clear negative relationship with the DJF PC1.
By examining the correlation between the JJAS PC1 and the
following DJF PRECT we get interesting results (Fig. 4j–l).
India, the mainland of Southeast Asia, and Indonesia show
a quite strong anticorrelation, r ≈ (−0.4) – (−0.8), while
from the northern part of the Indian Ocean through the east-
ern and central parts of Africa and northward to the Ara-
bian Peninsula a considerable positive correlation can be ob-
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served. This suggests that based on the JJAS PC1, as an index
for the actual ENSO phase, the DJF precipitation conditions
are mostly predictable in these regions.

The question of whether climate change has an impact on
the strength of the teleconnections in these regions naturally
arises. To answer the question, similarly to the trends ob-
tained for the regression maps in Fig. 2, we construct global
linear trend maps of the ensemble-based correlation coeffi-
cient maps over time (Fig. 5). For the zero-lag correlations
in JJAS (Fig. 5a), among those regions where the strength
of the connections are high during the investigated 150 years
(indicated by different markers), Australia, an extended part
of Indonesia, and the southern part of South America show
a clear increase of (1–2)×10−3 yr−1 in the anticorrelation,
while some spots in the southern part of the Atlantic Ocean
and central Africa have an increasing positive correlation
during 1950–2100; that is, a strengthening of the connec-
tion between the phase of the ENSO and the precipitation
conditions is found for these regions. Southern India’s and
Central America’s positive correlations and the negative cor-
relation of the Philippine Sea seem to weaken. For the zero-
lag correlation in DJF (Fig. 5b) a somewhat different picture
opens up. The strength of the positive correlation from cen-
tral Africa to the Aral Sea and in the North Atlantic Ocean
and the strength of the negative correlation in southern In-
dia increase further by a trend of (1–4)×10−3 yr−1, and in
the Niño3 region a somewhat stronger positive trend can be
found than in JJAS. The spatial distribution of the correla-
tion coefficients is similar for the JJAS PC1 and DJF PRECT
(Fig. 2d). The lagged correlations for DJF PC1 and JJAS
PRECT (Fig. 5c) are found to increase considerably near the
eastern coast of Africa, in the Niño3 and Niño4 regions and
around the Caribbean Islands. Thus, based on the larger value
of the correlation coefficient implying a stronger relation-
ship, we conclude that a half-year-forward estimate of the
precipitation from PC1 data in these regions becomes more
accurate. The abovementioned (1–4)×10−3 yr−1 trends lead
to a remarkable change of 0.15–0.45 in the r values over
150 years.

4 Conclusions

In this study, we investigated the changes in the ENSO phe-
nomenon and the alterations of its precipitation-related tele-
connections for 1950–2100 in the CESM-LE climate simu-
lations. To avoid the disadvantages of the subjective choices
of traditional temporal methods, here we used the ensemble-
based snapshot framework, providing instantaneous quanti-
ties computed over the ensemble dimension of the simula-
tions. To our knowledge, this is the first time that the snap-
shot empirical orthogonal function (SEOF) analysis using
SST data is utilized to reveal changes in the pattern and am-
plitude of the ENSO. Instantaneous ensemble-based corre-
lation coefficients between the principal components (PC1s)

of the first SEOF mode (considered here as an index for the
ENSO phase) and the total precipitation at each grid point
over the globe were also determined to evaluate ENSO’s
precipitation-related teleconnections detailed below.

Our results show that the ENSO pattern undergoes re-
markable changes during the investigated time period. This is
found to be more pronounced in the JJAS season, where the
ensemble-based SST regression maps even show 0.45 and
−0.45 ◦C changes in the Niño3–Niño3.4 region and in the
western part of the Pacific Ocean over 150 years, respec-
tively. We note that these changes are of the same order of
magnitude as the typical SST variability across the ensemble
at different time instants, which is found to be of 0.5–1.5 ◦C
in the equatorial region. The Niño3 amplitude also increases
by about 20 % and 10 % in JJAS and DJF, respectively. We
also found clear growth at a similar rate in the ENSO strength
(defined as the ensemble standard deviation of the PC1s) and
in the explained variance in the first SEOF mode. This means
that the amplitude of the fluctuations in the SST field will in-
crease, and the first SEOF mode will explain a much larger
fraction of the variability in the SST fields by the end of
the 21th century. In general, a larger change in the differ-
ent quantities is found for JJAS than for DJF. While at the
beginning of the JJAS season the ENSO cycle is generally
just switching phase in the CESM-LE (Wieners et al., 2019),
DJF can be considered to be the “main” ENSO season with
the largest SST anomalies. The smaller changes in the DJF
quantities may be explained by the conjecture that, calcu-
lated for the main ENSO season, the DJF characteristics may
be more robust and, thus, undergo weaker alterations during
the investigated 150 years than during the JJAS ones, which
are calculated around the phase change in the cycle. A more
thorough investigation of this question could be a topic of
future research.

The precipitation-related teleconnections of the ENSO
also show a considerable change over time in several regions.
For example, the anticorrelation with precipitation in Aus-
tralia and on the southern edge of South America in JJAS are
predicted to be more pronounced by the end of the 21th cen-
tury, as it changes from about −0.5 by −0.15. At the same
time, the positive correlations in central Africa and the west-
ern coast of South America, especially in Chile, become en-
hanced by 0.15–0.3 as well.

Lagged correlation coefficients reveal potential pre-
dictability of the precipitation conditions based on
ENSO’s PC1. We found that the amount of precipita-
tion in Australia, New Zealand, and Indonesia in JJAS is
generally less than average after DJF warm episodes, while,
e.g., the eastern coast of Africa is wetter than average. In
DJF the amount of precipitation in Australia and in southern
India is less than average after previous warm conditions in
JJAS; however, the central islands in Indonesia and a large
part of eastern and central Africa get more precipitation.
Our results show that the strength of these connections
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strengthens over time, especially in the African region up to
the Arabian Peninsula and slightly in southern India.

As an outlook, we mention that according to Seager et al.
(2019), in most of the state-of-the-art climate models the
west-to-east, warm-to-cool SST gradient decreases with a
rising greenhouse gas concentration, inconsistent with re-
analysis data. It was found that similarly to most of CMIP5
models, the ensemble mean of CESM-LE also shows a mod-
erate SST trend over 60 years in the Niño3.4 region, incon-
sistent with HadISST (Rayner et al., 2003) and NCEP/NCAR
reanalysis (Kistler et al., 2001). However, this trend proves
to be smaller than the CMIP5 multimodel mean for the stud-
ied time interval for end years 2008–2017, and some of the
ensemble members approach the values derived from re-
analysis well. Furthermore, the ECMWF/ORAS4 reanaly-
sis (Balmaseda et al., 2013) trend values are quite close to
the CESM-LE ensemble mean for end years of 2008–2009.
The deviation in the SST trend between the observations and
CESM-LE may have an effect on the strength of and change
in the teleconnections; however, since Sect. 3.2 proves that
the results from CESM-LE obtained by SEOF analysis are
roughly consistent with the observed teleconnections and the
CESM-LE performs relatively well according to Seager et al.
(2019) compared to the most of CMIP5 models, we expect
that it does not influence much the strength of and changes
in the connections found in this study.

Finally, we note that our snapshot method lacks any tem-
poral statistics for the EOF analysis and correlation calcu-
lation for revealing teleconnections; thus, it is an objective
way to explore the time evolution of other phenomena and
teleconnections during climate change. A larger number of
ensemble members may even result in more accurate statis-
tics and smaller fluctuations in the time series.
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