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S1 Models and data 1 

In this study, we used twelve terrestrial biosphere models (TBMs) that participated in the Multi-2 

scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) (Huntzinger et al., 2013; 3 

Wei et al., 2014a, 2014b) to investigate the effects of climate change, land use and land cover change 4 

(LULCC), and rising CO2 concentration on the temporal changes in GPP. These models are 5 

Community Land Model version 4 (CLM4; Shi et al., 2011; Mao et al., 2012), CLM4 with Variable 6 

Infiltration Capacity Runoff Parameterization (CLM4VIC; Lei et al., 2014), Dynamic Land Ecosystem 7 

Model (DLEM; Tian et al., 2011, 2012), Global Terrestrial Ecosystem Carbon model (GTEC; Ricciuto 8 

et al., 2011), Integrated Science Assessment Model (ISAM; Jain et al., 2013), Lund-Potsdam-Jena 9 

Dynamic Global Vegetation Model, Swiss Federal Research Institute WSL modification (LPJ-wsl; 10 

Sitch et al., 2003), Organizing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE-LSCE; 11 

Krinner et al., 2005), Simple Biosphere version 3 by Jet Propulsion Laboratory (SiB3-JPL; Baker et 12 

al., 2008), SiB3 with Carnegie-Ames-Stanford Approach (SiBCASA; Schaefer et al., 2008), 13 

Terrestrial Ecosystem Model version 6 (TEM6; Hayes et al., 2011), Vegetation Global Atmosphere 14 

and Soil version 2.1 (VEGAS2.1; Zeng et al., 2005), and Vegetation Integrative SImulator for Trace 15 

gases (VISIT; Ito and Inatomi, 2012), respectively. They were all forced by the same climate drivers, 16 

LULCC, and CO2 data. The climate forcing data set was generated by combining the Climate Research 17 

Unit (CRU) data and the National Center for Environmental Prediction and National Center for 18 

Atmospheric Research (NCEP/NCAR) Reanalysis product (hereafter CRU-NCEP). Time-series data 19 

for atmospheric CO2 concentration derived from observations were applied to SG3, and other 20 

simulations used constant CO2. A merged product derived from a static satellite-based land cover 21 

product, SYNergetic land cover MAP (SYNMAP) (Jung et al., 2006) and the time-varying land use 22 

harmonization version 1 (LUH1) data (Hurtt et al., 2011) from the fifth Assessment Report of the 23 

Intergovernmental Panel on Climate Change (IPCC) were used to describe historical LULCC.  24 

S2 Analysis methods 25 

The nonparametric Mann-Kendall method was used to determine the statistical significance of 26 

trends in Chinese and regional GPP (area-weighted), where the Sen median slope (Sen, 1968) was 27 

considered as the trend value in this paper. Trend analysis was based on annual values averaged from 28 

monthly values. The first step was to test for statistical significance of trends by computing the Mann-29 

Kendall statistic S. Each data value was compared with all subsequent data values as follows: 30 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝐺𝑃𝑃* − 𝐺𝑃𝑃,).
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where n is the length of the record for a given grid cell or region. The variance of S (Eq. (S3)) was then 33 

calculated to test for the presence of a statistically significant trend using the Z-value (Eq. (S4)): 34 

𝑣𝑎𝑟(𝑆) = 1
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where q is the number of tied groups and tp is the number of data values in the pth group. The statistic 37 

Z was compared with a tolerable probability (the default significance level was set to 0.05 in this study). 38 

If a linear trend was statistically significant, then the change per unit time was estimated using a simple 39 

nonparametric procedure developed by Sen (1968): 40 

𝑏ST. = 𝑀𝑒𝑑𝑖𝑎𝑛YZ[[\2Z[[]
*2,	

^ , 𝑗 > 𝑘  .                                                                         (S5) 41 

If there were n values of GPPj in the time series, as many as n(n-1)/2 slope estimates could be obtained, 42 

and bsen was taken as their median. 43 

Each region’s relative contribution to the interannual variation (IAV) and seasonal cycle 44 

amplitude (SCA) of China’s GPP was also calculated based on the method proposed by Ahlström et 45 

al. (2015) and Chen et al. (2017). The regional contribution Rj (j=1,2, ...,9) to the IAV of China’s GPP 46 

was calculated using the following equations:  47 

𝑓b =
∑
cded,fghfg

hff

∑ |jf|f
,                                                                                                              (S6) 48 

𝑋l = ∑ 𝐴b𝑥b,lb ,                                                                                                              (S7) 49 

where xi,t is the GPP anomaly for region i in year t, Ai is the area of region i, and Xt is the area-weighted 50 

total GPP anomaly in the whole of China in year t. By this definition, fi is the average relative area-51 

weighted anomaly Aixi,t/Xt for region i, weighted by the absolute regional area-weighted anomaly |Xt|. 52 

fi ranges from -1 to 1. Higher positive fi indicates that IAV in the region varies in phase with integral 53 

IAV and makes a larger contribution towards the IAV of China’s GPP, whereas a smaller or negative 54 

fi represents the opposite. In the same way, the regional contribution to the seasonality of China’s GPP 55 

was calculated using Eq. (S6), in which xi,t is the monthly GPP departure from the annual mean 56 

(seasonal anomaly) for region i in month t and Xt is the area-weighted total seasonal GPP anomaly for 57 

all China in month t. 58 
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Figures 

 
Figure S1. Spatial patterns of temporal correlation coefficients between annual GPP from MTE and 

that from ensemble mean of MsTMIP simulations for the period of 1982–2010, including: (a) SG1, (b) 

SG2, and (c) SG3. Stippling highlights regions with significant correlations (p < 0.05). 5 
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Figure S2. Trends in annual GPP between 1982 and 2010 from the ensemble mean of MsTMIP 

simulations: (a) SG1, (b) SG2, (c) SG3 and (d) MTE. Stippling highlights regions with significant 

trend (p < 0.05). 
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