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Abstract. Earth system models (ESMs) are invaluable tools to study the climate system’s response to specific
greenhouse gas emission pathways. Large single-model initial-condition and multi-model ensembles are used to
investigate the range of possible responses and serve as input to climate impact and integrated assessment mod-
els. Thereby, climate signal uncertainty is propagated along the uncertainty chain and its effect on interactions
between humans and the Earth system can be quantified. However, generating both single-model initial-condition
and multi-model ensembles is computationally expensive. In this study, we assess the feasibility of geographi-
cally explicit climate model emulation, i.e., of statistically producing large ensembles of land temperature field
time series that closely resemble ESM runs at a negligible computational cost. For this purpose, we develop a
modular emulation framework which consists of (i) a global mean temperature module, (ii) a local temperature
response module, and (iii) a local residual temperature variability module. Based on this framework, MESMER,
a Modular Earth System Model Emulator with spatially Resolved output, is built. We first show that to success-
fully mimic single-model initial-condition ensembles of yearly temperature from 1870 to 2100 on grid-point to
regional scales with MESMER, it is sufficient to train on a single ESM run, but separate emulators need to be
calibrated for individual ESMs given fundamental inter-model differences. We then emulate 40 climate models
of the Coupled Model Intercomparison Project Phase 5 (CMIP5) to create a “superensemble”, i.e., a large en-
semble which closely resembles a multi-model initial-condition ensemble. The thereby emerging ESM-specific
emulator parameters provide essential insights on inter-model differences across a broad range of scales and
characterize core properties of each ESM. Our results highlight that, for temperature at the spatiotemporal scales
considered here, it is likely more advantageous to invest computational resources into generating multi-model
ensembles rather than large single-model initial-condition ensembles. Such multi-model ensembles can be ex-
tended to superensembles with emulators like the one presented here.

a number of times with slightly different initial conditions

The range of simulated climate responses to external radia-
tive forcing is affected by both internal variability and inter-
model differences (Hawkins and Sutton, 2009; Deser et al.,
2012; Taylor et al., 2012). While inter-model uncertainty is
typically accounted for by considering simulations from sev-
eral climate models (Meehl et al., 2007; Taylor et al., 2012;
Eyring et al., 2016), uncertainty due to internal climate vari-
ability is often quantified by running the same climate model

(Deser et al., 2012; Fischer et al., 2013; Kay et al., 2015;
Leduc et al., 2019).

As climate model ensembles are inherently expensive
to run, there is an interest in approximating Earth system
model (ESM) output with computationally cheap emulators.
In the field of climate science, the term emulator is used
for a variety of statistical models which learn from exist-
ing runs of complex climate models to infer properties of
runs which have not been generated yet. This makes it pos-
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sible to explore the phase space at a lower computational
cost. ESM emulators target different aspects of the climate
system. For example, some emulators focus on the impacts
of sub-grid-scale parameterizations (Rougier et al., 2009;
Williamson et al., 2013). Others target the effect of green-
house gas emission scenarios on global mean temperature
(Meinshausen et al., 2011; Goodwin, 2016) or on regional
mean climate fields (Santer et al., 1990; Tebaldi and Ar-
blaster, 2014; Tebaldi and Knutti, 2018). There are also em-
ulators for regional-scale internal climate variability (Cas-
truccio and Genton, 2016; Alexeeff et al., 2018; Link et al.,
2019). Recently, the first attempts have been made to emu-
late the full dynamics of simple general circulation models
(Scher, 2018; Scher and Messori, 2019).

In this study, the term emulator is used to refer to a com-
putationally cheap statistical tool which generates additional
realizations of land temperature field time series for a specific
greenhouse gas emission pathway at a yearly resolution. The
presented emulator thus produces realizations which closely
resemble initial-condition ensemble members of the consid-
ered ESMs. In the context of large multi-model ensembles,
our computationally cheap emulator can be used to pro-
duce look-alikes of large initial-condition ensembles for ev-
ery model within the multi-model ensemble, resulting in a
“superensemble”, i.e., a large ensemble which closely resem-
bles a multi-model initial-condition ensemble.

To build this statistical temperature emulator, an overarch-
ing modular framework is proposed and put into the context
of previous work in Sect. 2. The employed data and terminol-
ogy are described in Sect. 3, and the specific implementation
of the framework is introduced in Sect. 4. To visualize the
characteristics and capabilities of the emulator, detailed re-
sults are shown for four example ESMs in Sect. 5, before
applying the emulator to the large CMIP5 (Coupled Model
Intercomparison Project Phase 5; Taylor et al., 2012) multi-
model ensemble containing 40 climate models in Sect. 6. In
Sect. 7, the results are discussed, and finally, in Sect. 8, the
conclusions and an outlook are provided.

2 A framework for end-to-end climate model
emulation

We propose an additive framework for temperature emula-
tion at the yearly scale for a specific greenhouse gas emission
pathway, which can be summarized as

lob
Too = £ (T5) + 7o M

where the local temperature 7§ ; at grid point s and time ¢ is

defined as a response to the global mean temperature Ttgk’b,
indicated by the function f(), and a stochastic local residual
temperature variability term 7; ;. Contributions from physi-
cal feedbacks other than the ones captured within the global
mean temperature signal are thus neglected. The assumption
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of an underlying additivity is in line with frequently em-
ployed approaches in uncertainty analysis in climate science
(Hawkins and Sutton, 2009) and in climate change detection
and attribution studies (Allen and Stott, 2003).

Our framework requires three modules: a global mean
temperature module, a module for the grid-point-level tem-
perature response to the global mean temperature, and a lo-
cal residual temperature variability module. In the following,
we place existing literature within these modules before dis-
cussing the connections to our emulator. As this study is pri-
marily concerned with temperature, we focus solely on this
variable in our literature review. However, several of the ref-
erenced studies also treat additional variables such as precip-
itation (e.g., Tebaldi and Arblaster, 2014; Seneviratne et al.,
2016; Wartenburger et al., 2017) or cloud cover (e.g., Osborn
et al., 2016).

2.1 Global mean temperature module

Global mean temperature is often an output of computation-
ally efficient simple energy balance climate models (Mein-
shausen et al., 2011; Goodwin, 2016). While such models
provide an estimate of the global mean temperature trend,
they do not produce interannual global mean temperature
variability. To obtain an ensemble of global mean tempera-
ture variability, statistical models which account for temporal
autocorrelation can be used (Brown et al., 2015).

2.2 Local temperature response module

Pattern scaling is a frequently employed approach to relate
local temperature to global mean temperature and is also
used to emulate warming patterns across emission scenarios
(Santer et al., 1990; Mitchell, 2003; Tebaldi and Arblaster,
2014). It was originally introduced by Santer et al. (1990),
and different implementations exist (Mitchell, 2003). Most
often, temperature fields are averaged over a late 21st cen-
tury multi-decadal time period and the associated average
global mean temperature is obtained (Tebaldi and Arblaster,
2014). This pattern is then linearly interpolated to a desired
global mean temperature. An alternative is to extract the pat-
tern from a transient simulation at the time when the simu-
lation reaches the desired global mean temperature (Herger
etal., 2015; Seneviratne et al., 2016; King et al., 2017). Other
approaches include carrying out a linear regression (Lynch
et al., 2017) or fitting a linear mixed-effect model (Alexeeff
et al., 2018) to global mean temperature at each grid point
individually. The most important assumption underlying pat-
tern scaling is that local mean temperatures are linearly re-
lated to global mean temperature and that this relationship
is consistent across forcing scenarios. For surface tempera-
ture on land this assumption is satisfactorily met (Mitchell,
2003; Tebaldi and Arblaster, 2014; Seneviratne et al., 2016;
Wartenburger et al., 2017; Osborn et al., 2018). However, for
strong mitigation scenarios and under strong aerosol forc-
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ing, pattern scaling is less accurate (May, 2012; Levy et al.,
2013). Additionally, it is assumed that external forcing and
internal variability are independent, which may not always
be true (Lopez et al., 2014).

More complex local response emulation methods are rare
and often directly conditioned on CO; concentration pro-
files instead of global mean temperature (Castruccio et al.,
2014; Holden and Edwards, 2010). For instance, it has been
proposed to employ past trajectories of atmospheric CO» to
model regional temperatures with an infinite distributed lag
model to capture nonlinear behavior in spatial patterns for
regional-scale emulation (Castruccio et al., 2014) and within
global space—time models (Castruccio and Stein, 2013).
Other authors use singular value decomposition to emulate
decadal temperature fields across scenarios while accounting
for complex spatiotemporal feedbacks (Holden and Edwards,
2010; Holden et al., 2014).

While the focus is usually on emulating the pattern associ-
ated with the global mean temperature trend, patterns associ-
ated with physical modes of variability such as the El Nifio—
Southern Oscillation and the Pacific Decadal Oscillation can
additionally be derived (McKinnon and Deser, 2018).

2.3 Local residual temperature variability module

Several approaches exist to emulate local residual tempera-
ture variability based on observations and climate model sim-
ulations (Castruccio and Stein, 2013; Osborn et al., 2016;
McKinnon et al., 2017; Alexeeff et al., 2018; Link et al.,
2019). Observations can be employed to avoid climate model
biases but are limited by rather short observational records
when deriving the local temperature variability properties
(Osborn et al., 2016; McKinnon et al., 2017; McKinnon and
Deser, 2018). The simplest approach is to detrend observed
temperature time series and obtain additional realizations by
shifting the starting date of the time series (Osborn et al.,
2016). More realizations have been generated by resampling
the spatial fields of detrended observed local temperature
variability in blocks of 2 years (McKinnon et al., 2017). The
approach was later refined to explicitly account for physical
modes of variability to further reduce temporal autocorrela-
tion in the resampled fields (McKinnon and Deser, 2018).
When employing ESMs instead, longer time series and
multiple realizations are available to derive the statistical
properties of the local residual temperature variability. Sev-
eral authors fit autoregressive (AR) models to a set of climate
model runs to account for temporal autocorrelation when em-
ulating local residual temperature variability (Castruccio and
Stein, 2013; Castruccio et al., 2014; Castruccio and Genton,
2016; Bao et al., 2016). Thereby, the spatial dependence in
the innovation terms of the AR models can be considered
by parameterizing their covariance structure with a Matérn
covariance function (Castruccio and Stein, 2013; Castruccio
and Genton, 2016; Bao et al., 2016). Alternatively, detrended
ESM runs can be decomposed into their principal compo-
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nents, and their phases can be randomly perturbed to generate
additional realizations of local residual temperature variabil-
ity (Link et al., 2019).

All approaches listed so far rely on the assumption that
local residual temperature variability is stationary in time,
which is known not to be fulfilled everywhere. Olonscheck
and Notz (2017) and references therein provide a compre-
hensive overview of possible changes in temperature vari-
ability in the historical time period and the business-as-usual
greenhouse gas emission scenario for the large CMIPS multi-
model ensemble. They find that the strongest and most likely
changes will occur over oceans but also point out land re-
gions where variability is projected to change in the future.
During the historical time period, they identify only weak
changes in the variability. To account for such temporal non-
stationarities, it has been proposed to resample the detrended
temperature fields of large single-model initial-condition en-
sembles within a certain window size around a global mean
temperature level (Alexeeff et al., 2018). To enlarge the num-
ber of fields to sample from, a method has additionally been
developed to stochastically emulate spatially nonstationary
Gaussian fields with a LatticeKrig model (Nychka et al.,
2018).

2.4 This study

While most studies focus on one or two of the modules
required to mimic an initial-condition ensemble, this study
proposes a framework which incorporates all three compo-
nents. Since only 12 out of 40 CMIP5 models provide sev-
eral initial-condition members, it is essential to test to what
extent an emulator trained on a single run is able to approxi-
mate both its training run and additional independent initial-
condition members. We thus emulate the full CMIP5 multi-
model ensemble based on single training runs and create a
superensemble which accounts for inter-model uncertainty
across all 40 climate models. To the best of our knowledge,
this study is the first to implement an emulator which mimics
an initial-condition ensemble based on a single training run
and applies it to such a large multi-model ensemble.

3 Data and terminology

3.1 Data sources and terminology

Runs from 40 CMIP5 climate models (Taylor et al., 2012)
covering the historical time period (1870-2005) and the
business-as-usual greenhouse gas emission scenario RCP8.5
(2006-2100; Riahi et al., 2011) are employed. To calibrate
the emulator, a single run per climate model is used. This
run is referred to as the training run (Table 1). For 12 out of
40 CMIP5 climate models more than one initial-condition
member is available. These additional independent initial-
condition ensemble members are referred to as test runs
(Table 1). A special focus is on four ESMs with differing
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SREX region abbreviations

hY

Figure 1. Map of the SREX regions and their abbreviations. The
considered land grid points are shown in gray.

model genealogies (Knutti et al., 2013), namely CanESM2,
CESM1(CAMS), HadGEM2-ES, and MPI-ESM-LR. All cli-
mate models, the associated modeling groups, and the num-
ber of initial-condition members employed here are listed in
Table Al.

Additionally, stratospheric aerosol optical depth is used as
a proxy for volcanic activity during the historical time period.
This aerosol dataset was originally described by Sato et al.
(1993) and later updated to cover the considered time period.

3.2 Data processing

Here, we focus on surface temperature anomaly at a yearly
resolution. Temperature fields were bilinearly interpolated
onto a 2.5° x 2.5° grid, resulting in 3043 land grid points for
each climate model. Yearly mean temperatures were com-
puted at each grid point, and the average over the reference
period of 1870—1899 in the training run at the respective grid
points was subtracted. In the text, for simplicity reasons, we
use the term “temperature” when referring to “yearly surface
temperature anomaly”. For the stratospheric aerosol optical
depth, the globally averaged yearly time series is employed.

Whenever regional averages are shown, area-weighted
means are referred to. The regions employed in this study
are 26 land regions defined in the Special Report on Manag-
ing the Risks of Extreme Events (SREX) (Seneviratne et al.,
2012) as well as global mean and global land mean (Fig. 1).
While global mean refers to the average across all grid points,
global land mean refers to the average across all land grid
points excluding Antarctica.

4 Methods

4.1 Framework implementation
41.1 General approach

We follow the framework introduced in Sect. 2 to emulate
temperature fields at the yearly scale for a specific green-
house gas emission pathway. The chosen implementation
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is called MESMER, which stands for Modular Earth Sys-
tem Model Emulator with spatially Resolved output, and is
shown in Fig. 2. Detailed information for each individual
module is provided in the following sections. In short, the
global mean temperature TthOb is split into a trend and a vari-
ability term, both of which contribute linearly to the local
temperature T ;. The residual local temperature variability
ns,: is modeled as an AR(1) process with spatially correlated
innovations.

To calibrate the emulator, a single run spanning 231 years
(1870-2100) per model is used. For the calibration, the
global mean temperature trajectory and the associated land
temperature fields are required.

4.1.2 Global mean temperature module

In the global mean temperature module, additional realiza-
tions of global mean temperature time series T,gk]b are gen-

erated. For this purpose, T,glob is separated into a trend
T,glOb’trend shared by all emulations and a variability term

lob, . . s g .
7™ which varies between individual emulations:

lob lob, trend lob, var
TE® =TF +TF ) (2)

lob, trend . lob
In T,g oo, tren , smooth forcing T,g 008 and abrupt changes

. . . lob, vol
induced by volcanic eruptions Ttg bl

an additive way:

are accounted for in

glob,trend __ ,glob,sm
=T

Tt + T[glob,volc. (3)

First, T2°™™ is derived by locally weighted scatterplot

smoothing (LOWESS) of Ttgbb.

glob, volc

In a next step, 7, is approximated as the linear re-

sponse of the residuals of the smooth trend, i.e., Tlglob -
T,gk’b’sm, to stratospheric aerosol optical depth AOD; with re-

gression coefficients Ag and A1:
T[glob,volc = Ao+ A -AOD,. 4)

The time series of global mean temperature variability
1 1 1 .
pgobvar — gelob _ pelobtrend 5o odeled as an AR process

of order p with coefficients o, ..., ), such that

k=p
lob, var lob, var
Ttg =ao+ E ak-Tik + €
k=1

with ¢, ~N(0,0), )

whereby €, is a white noise innovation term drawn from a
Gaussian distribution with mean zero and standard deviation
0.
In this study, the LOWESS smoothing window length is
50 years with weights decaying with increasing distance ac-
cording to a tricube weight function. The regression coeffi-
cients for the forced response to volcanic eruptions are ob-
tained with the ordinary least squares (OLS) algorithm. The
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Table 1. Terms used to refer to different climate model runs throughout this study.

Name Description Application Figures
Training run  Climate model run (1870-2100) used to  — emulator calibration 3,7, 8,9, 10,
calibrate the emulator parameters — emulator evaluation in terms of fitting 11, 12
the training run
Test run Independent initial-condition ensemble  — emulator evaluation in terms of mim- 4, 5, 6, 8, 9, 10,

member (1870-2100) not used to cali- icking a climate model initial-condition 11, 12

brate the emulator parameters ensemble

MESMER: Ty, = f(7,7"") + s,

k=p
Ttglob,sm + Tglob, volc + o + z - TQ’OD var+£t , &~ N0, 0)
"
1900 lQSﬂYEBVZIJ?O 2050 2100 1900 IBSDVENZ:)I])O 2050 2100
Local residual
Local response T *Pmodule variability 0, module
plrend . Tglebtrend gt 4+ BT 4 Yo s+ Y Ns -1+ Vst = Ts,t

Vs, ¢ ~ N0, Zy(r)) \

J Emulation

Local trends
Ttrend

5‘ nd T‘J’br "|n2100

Vi & )

o )

\ —6..1—"“’"//
i s o6 7 s I o e — -12 -06 00 06 12
Tr*C) TIC) TI°C)

iability

__05cin2100 T.,in 2100

Figure 2. Illustration of the emulation framework with the MESMER implementation.

coefficients of the AR process are fit by means of maximum 4.1.3 Local temperature response module

likelihood, and the Bayesian information criterion (BIC) is
employed to select its order p with the maximum considered
order being 8.

The local temperature response module translates the global
mean temperature signal into a grid-point-level response

T,°P. Motivated by the pronounced linear scaling of regional
land temperatures with global mean temperature (Senevi-
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ratne et al., 2016; Wartenburger et al., 2017), the local re-
sponse is expressed as

S lob lob, trend lob,
Txr’etsp —f (Tg o ) f (Tg ob, tren, Tg o var)
trend glob, trend int glob, var
= IBSTCH : T[ + .B;n + ’3;’31' : T[ ’ (6)

with regression coefficients ", g™, and B}*", whereby

,Bim represents the intercept term. Hence, the responses of the

lob, trend lob
local mean temperature to 7,F° " and 75"

rately taken into account.
In this study, the linear regression coefficients are esti-
mated with OLS at each grid point.

are sepa-

4.1.4 Local residual temperature variability module

The local residual temperature variability 7, , refers to the
spatiotemporally correlated residual variability, which can-
not be accounted for through a response to Ttg]Ob. This vari-
ability is assumed to be Gaussian in nature (see Fig. S1 in
the Supplement for the results of a Shapiro—Wilk test for
normality) and stationary in time, which makes it possible
to model the time series as local AR(1) processes with spa-
tially correlated innovations (Humphrey and Gudmundsson,
2019). Hence, additional realizations of 7y ; are generated
stochastically according to

Ns,t = V0,5 + V1,5 * Ns,t—1 + Vst
with vy, ~N(0, Z,(r)), @)

whereby yp s and yj ; are the coefficients of the AR model,
and v, ; represents spatially correlated innovations drawn
from a multivariate Gaussian with mean zero and covariance
matrix X, (r) (Cressie and Wikle, 2011).

For an AR(1) process, X, (r) can be analytically derived
from the covariance matrix of the residual variability X, (r)
with

o) = 1—y1i-y/1

whereby the indices i and j refer to spatial locations s
(Cressie and Wikle, 2011).

To estimate X,(r), the empirical covariance matrix in is
computed. However, f),] is rank deficient because substan-
tially fewer temperature field samples are available than there
are land grid points. Thus, 53,7 needs to be regularized to ob-
tain a robust estimate of the covariations between the grid
points. For this purpose, we employ localization, an approach
which is well established in the field of data assimilation
(Carrassi et al., 2018). Localization retains anisotropy on re-
gional scales, which is an important asset when stochasti-
cally modeling temperature variability since anisotropy is a
prevalent feature due to physical factors such as the prevail-
ing wind direction and geometry of mountainous terrain. To
localize fl,, , it is point-wise multiplied with a smooth correla-
tion function G(r) with exponentially vanishing correlations

=y, Zp(Mi,j (¥
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with distance:
2,(r) =, 0G(r), 9)

whereby o denotes the Hadamard product. Here, G(r) is the
numerically efficient Gaspari—-Cohn function (Gaspari and
Cohn, 1999), which vanishes beyond 2 times the localization
radius L:

l——r+8r+2r %rS,

if 0<r<l,
4— 5r+3r+8r ér“—i—%-rs
G(r)=

i
I/\ \

if 1 <2,
0,

if r>2,

withr = % and d the geographical distance between two grid
points.

In this study, the AR(1) coefficients are fit at each grid
point by means of maximum likelihood. In our framework
implementation, the obtained intercept terms Y  are effec-
tively zero, as the local response module already contains an
intercept term (Eq. 6). The localization radius to regularize
in is determined by cross-validation with a leave-one-out
approach. Localization radii between 1000 and 4750 km ev-
ery 250 km are tested. Thereby, the empirical covariance ma-
trix is estimated based on 230 years, and the likelihood to
draw the field of the left-out year from the regularized ma-
trix is computed. This process is repeated until every year
has been left out once for every localization radius. The re-
spective log-likelihood values for each localization radius are
summed up across the left-out years, and the radius which is
associated with the maximum likelihood is chosen.

4.2 Evaluating the emulator

The emulator’s performance is evaluated on the training run
and — where available — on test runs. While the evaluation on
the training run indicates how successfully this framework
implementation captures the training run, the evaluation on
the test runs serves as a proxy for the emulator’s capability
in mimicking true ESM initial-condition ensembles. For the
evaluation, 1000 emulations are generated for each climate
model.

4.2.1 Local trend verification

The local trends T;ffnd are shared by all emulations and serve
as an estimate of the externally forced response with

Ttrend ﬂtrend Tgl()b ,trend + ,Bmt (11)

To evaluate how well the emulated local trends capture
true climate model runs, the Pearson correlation of 77"
with T ; of the corresponding training run is computed. For
climate models with test runs, the correlation coefficient is
additionally computed between T;ff“d and each test run.
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4.2.2 Local variability verification

The local variability 72" is different in each emulation and
corresponds to the internally generated natural variability:

lob,
T =B TE ™ 4 . (12)

To compare the emulated 7'{" to true climate model runs,
an estimate for the local variability within the climate mod-
els needs to be obtained. For this purpose, the emulated local
trends Tytff“d (Eq. 11) are subtracted from the climate mod-
els’ Ty s.

To evaluate T,'{', on the grid-point level, lag-1 temporal
autocorrelations and standard deviations are considered. Ad-
ditionally, spatial cross-correlations between grid points are
verified. These quantities are computed for each individual
emulation as well as for all climate model runs. For each
quantity, the Pearson correlation coefficient between each in-
dividual emulation and the training run is calculated. Addi-
tionally, the correlation between each individual test run and
the respective training run is computed where test runs are
available. These correlations between the climate model runs
serve as benchmark values for the correlations between the
emulations and the training run.

4.2.3 Regional-scale ensemble reliability verification

On regional scales, the emulated temperatures 7 ; (Eq. 1) are
evaluated visually and quantitatively in terms of ensemble
reliability, i.e., the ability to capture the distribution of ESM
runs with an ensemble of emulations (Weigel, 2012). For the
visual verification, regionally averaged emulated time series
are compared to climate model runs for global land, Cen-
tral Europe (CEU), and Southeastern South America (SSA).
In the quantitative verification, the emulator’s ability to reli-
ably reproduce a set of ESM quantiles (5 %, 50 %, 95 %) is
evaluated in all 27 land regions. Smooth time series of the
emulated quantiles are obtained based on the 1000 emula-
tions, and the percentage of time slots during which a climate
model run is below these emulated quantiles is counted. This
is done for the training run and — where available — also for
the test runs. Additionally, the counting is carried out for each
individual emulation. The resulting deviations of the individ-
ual emulations from the emulated quantiles can be compared
to the deviation the climate model runs exhibit from the emu-
lated quantiles. If the climate model run deviation lies within
the 95 % interval spanned by the individual emulation devi-
ations, the climate model run is considered indistinguishable
from individual emulations at this quantile.

5 Exploring emulator properties for four example
ESMs

5.1 Calibration results

The parameters obtained from training the emulator on four
example ESMs reveal distinct inter-ESM differences in ev-
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ery emulator module (Fig. 3). The global mean temperature
trends diverge by 0.9 °C by the end of the 21st century. For
each ESM, T,glOb’VaI is described by oscillating AR coeffi-
cients with the first lag being positive, but the AR process
order and the standard deviations of the innovations vary.

In the local response module (Eq. 6), the strongest warm-
ing rates, i.e., the largest ﬁ;re"d terms, are found in the north-
ern high latitudes, but there are substantial differences in the
plrend patterns between emulators trained on different ESMs
(Fig. 3). For example, the CESM1(CAMS) emulator exhibits
less warming in the tropics than the others do. In all emula-
tors, the intercept term ,Bj,m is generally small in magnitude
and smooth in space. The 8" fields indicate that Alaska, the
Amazon, and Australia frequently covary with global mean
temperature variability. Only for HadGEM2-ES does central
Asia emerge as a region of large 8" values.

The local residual variability (Eq. 7) exhibits generally less
memory in the northern high latitudes than in the tropics as
indicated by the lag-1 autocorrelation coefficients (Fig. 3).
The innovations are largest in magnitude in high-latitude
continental climates, such as northern Asia, and smallest in
the tropics. However, for these quantities the patterns also
differ between emulators calibrated on different ESMs. The
localization radii chosen to regularize the empirical spatial
covariance matrix in range from 1750 to 2750 km.

5.2 Example realizations

Emulated temperature fields are visually indistinguishable
from ESM test runs that were not used during training
(Fig. 4). All fields exhibit the strongest warming and vari-
ability in the northern high latitudes. In terms of variability,
CESM1(CAMS), HadGEM2-ES, and their emulations show
more patchy behavior, i.e., locally more confined variability,
than CanESM2 and MPI-ESM-LR.

Time series of emulations and ESM test runs averaged
over global land, CEU, and SSA highlight the emulators’ ca-
pability to reproduce the regionally characteristic behavior of
the climate system (Fig. 5). These regions differ in terms of
the warming trend and variability around this trend. The vari-
ability is smallest on the global scale since local anomalies
tend to average out globally. In CEU, the warming rate and
the variability are larger than in SSA.

5.3 Emulator transferability between ESMs

Figure 6 explicitly shows what the results of Sect. 5.1 and 5.2
have already hinted at, namely that an ensemble of emula-
tions generated by an emulator calibrated on a specific ESM
is capturing unique properties of that ESM, which in turn are
not transferable to other ESMs. For example, the warming
rate of the ensemble generated by the CESM1(CAMS) emu-
lator is inconsistent with all three other ESMs on the global
land scale. As expected, differences are also found in the
variability around the trend, which is, e.g., visibly smaller
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Figure 3. Emulator calibration parameters (rows) for four example ESMs (columns). (a) For the global mean temperature module,
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standard deviations of the innovations, and the localization radii are displayed.

in SSA in the CESM1(CAMS5) emulations than in the runs of
the other ESMs. The implications of these results are further
discussed in Sect. 7.3.

6 Creating a CMIP5 superensemble

6.1 Calibration results

Figure 7 shows summary statistics of the calibrated parame-
ters for each CMIP5 climate model, highlighting inter-model
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differences in each emulator module. In the Supplement,
plots analogous to Fig. 3 are additionally provided for each
climate model for readers interested in the geographical pat-
terns of the emulator parameters (Figs. S2-S10).

In the global mean temperature module (Eq. 2), T,gk)b’tmml
ranges between 3.4 and 6.3 °C at the end of the 21st cen-
tury (Fig. 7). For 45 % of the climate models, T,gk)b’Var can
be modeled as an AR(1) process. In the remaining ones ei-
ther an AR(2) or AR(3) process is chosen. All emulators con-
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Temperature fields of ESM test runs and emulations in 2100
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(b)

Figure 4. Temporal snapshots depicting temperature field realizations in 2100 (rows) for four example ESMs (columns). (a) One ESM field
from a test run and (b) two emulations (EMUs) are shown. The temperature on top of each map refers to the global land mean.
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Figure 5. Regionally averaged temperature time series (rows) for four example ESMs (columns). The regions are (from top to bottom) global
land, Central Europe (CEU), and Southeastern South America (SSA). In each panel, one emulation (EMU) is highlighted in dark gray and
49 other emulations are shown in light gray. Additionally, all available ESM test runs are plotted in color.
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Emulator calibration parameters
Tglob trend

— 20801
= 2000
£ 1920 1

7'-gl'ob,' var
t

pl-]
= w uv
al-]

AR coeffs

.14
.07 1

Ginnov [°C1 AR order

o o o

O o e L L e e s L s e s e L e e e L e e e e e L

(b)

B;rend [_]

1 o NO Ny
uouwo U o Lk EFww
f L ) L

[°C]

int
s

B

[-]

var
s

B

(c)

Yis [-]

L [km]

Loc radius

CCSM4 -
FIO-ESM -
MIROCS -

BNU-ESM -

CanESM2 4

ACCESS1.0 |

ACCESS1.3 A

BCC-CSM1.1 -

CESM1(BGC)

CESM1(CAMS)

CMCC-CESM -

CMCC-CM A

CMCC-CMS

EC-EARTH -

GFDL-CM3 -

CNRM-CMS5 -
CSIRO-MK3.6.0 -
FGOALS-g2 -

GFDL-ESM2G -

GFDL-ESM2M -
GISS-E2-H-CC -

GISS-E2-H -
GISS-E2-R-CC A

GISS-E2-R -
INM-CM4 4

HadGEM2-CC -

HadGEM2-AO -

HadGEM2-ES -

IPSL-CM5A-LR -

IPSL-CM5A-MR -

IPSL-CM5B-LR -

MIROC-ESM -

MRI-ESM1

MPI-ESM-LR -

MPI-ESM-MR -

MRI-CGCM3 -

NorESM1-ME -

NorESM1-M -

BCC-CSM1.1(m)
MIROC-ESM-CHEM -
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tain oscillating positive and negative AR coefficients with the
first coefficient being positive, but they differ in the magni-
tude of the respective AR coefficients. The associated inno-
vations vary in their standard deviations by a factor of al-
most 3 (0.06-0.15°C).

In the local response module (Eq. 6), more than 80 % of
the land grid points warm more quickly than the global mean,
ie., ﬁ;re"d > 1, in 25 out of 40 emulators (Fig. 7). Overall,
the spread in the B terms differs substantially between
emulators trained on different climate models. The intercept
terms Bi" cluster closely around zero in each emulator. The
fraction of outlier grid points deviating > 1 °C from zero, and
hinting at suboptimal local fits, exceeds 1 % in only one of
the emulators. The vast majority of land grid points are pos-
itively correlated with T,glOb’Var, ie., By* > 0, with the min-
imum fraction of positive correlations amounting to 82 % of
the land grid points.

In the local residual variability module (Eq. 7), the year-
to-year memory contribution y; ¢ is overall generally small,
with the 75 % quantile lying below 0.25 for 34 out of 40 em-
ulators (Fig. 7). Only the six models of the HadGEM and the
MIROC family tend to have systematically larger y; ;. While
the median of the standard deviations of the innovations is
similar in all calibrated emulators, the full ranges differ sub-
stantially, with the maximum between 1.3 and 2.5°C. The
selected localization radii vary between 1750 and 4750 km.
Thereby, 4750 km is a strong outlier, with the second-highest
localization radii amounting to 3500 km. Generally, climate
models with a coarser native resolution are associated with
larger localization radii (not shown).

6.2 Example realizations

Figure 8 demonstrates that the emulations nicely capture
regional-scale trends and variability in the training and the
test runs of the CMIP5 ensemble. The histograms also high-
light that the larger sample size of the emulations by a factor
of 1000 makes it possible to sample the temperature phase
space better. The CMIP5 projections, and thus also the emu-
lations, diverge substantially towards the end of the 21st cen-
tury in global land and SSA but agree rather well in CEU.
At the end of the 21st century, an inter-model spread of
roughly 4 °C is observed in global land, with models spread
out evenly across this space. In SSA, on the other hand, the
bulk of the models clusters within a space of 2 °C and a few
outlier models cause the overall CMIP5 spread of almost
6°C.

6.3 Quantitative verification

6.3.1 Local trend verification

Correlation between the emulated local trends and the true
climate model runs is very high in both training and test runs
in all CMIP5 models, indicating that the forced trends are
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successfully extracted from each training run (Fig. 9). For the
climate models with test runs, these correlations are nearly
identical for each individual test and the training runs. The
smallest correlation coefficient is 0.90, and the highest one is
0.97.

6.3.2 Local variability verification

To evaluate the local variability at the grid-point level, lag-1
temporal autocorrelations and standard deviations are con-
sidered (Fig. 10). The lag-1 temporal autocorrelation is a
rather noisy parameter to estimate, and the median correla-
tions between emulations and the training run lie between
0.67 and 0.92. Generally, the correlation of the lag-1 auto-
correlations between test and training runs is smaller than the
one between emulations and training runs, implying a ten-
dency to overfit this parameter. The correlation between the
standard deviations of the emulations and the training run is
never below 0.98. The correlation between test and training
runs is almost identical to the one between emulations and
training runs. Thus, at the grid-point level the emulations re-
liably reproduce the stochastic variability of climate model
runs.

To evaluate the spatial cross-correlations between grid
points, three geographical bands are considered (Fig. 11). At
all spatial scales, cross-correlations between test and train-
ing runs are higher than correlations between emulations and
training runs. This is a direct consequence of the regulariza-
tion, which dampens covariances between grid points as a
function of distance and is thus inherent to the emulator’s
design. In a radius of up to 2000km, the emulators per-
form best and covariations between grid points are generally
well reproduced. The medians of the correlations between
the emulations and the training runs span from 0.85 to 0.98.
Plotting an individual example emulation against its associ-
ated training run clearly shows the dampening of the cross-
correlations in the regularized emulations. Emulations of cli-
mate models with larger localization radii (Fig. 7) have by
design a larger correlation with their respective training runs
(Fig. 11). In a radius between 2000 and 15 000 km, the em-
ulators perform the least well because cross-correlations for
this radius are strongly dampened in the emulations, with the
medians of the correlations between emulations and training
runs ranging from 0.17 to 0.82. For long-range distances be-
yond 15000 km, medians lie between 0.20 and 0.93. For all
distances beyond 2000 km, there are large inter-model dif-
ferences in the ability of the emulators to reproduce cross-
correlations between grid points. Also, correlations between
the spatial cross-correlations of test and training runs are
generally lower and exhibit more inter-model differences at
distances beyond 2000 km, highlighting that it is more dif-
ficult to estimate far-reaching spatial cross-correlation based
on single ESM runs. Generally, the emulations perform bet-
ter and are more comparable to test runs at distances beyond
15 000 km than between 2000 and 15 000 km, which is likely
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Regionally averaged temperature time series
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Figure 8. Regionally averaged time series as 2-D histograms for 40 CMIPS5 model training runs and 1000 emulations per model (a—c) as
well as for 12 CMIP5 models with one test run and 1000 emulations per model (d—f). For the CMIP5 model runs a color map from pink to
yellow is employed, and for the emulations a grayscale is used. The regions are global land (a, d), CEU (b, e), and SSA (c, f).
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Figure 9. Local trend verification for the CMIP5 models by means of Pearson correlation between the emulated local trends and the training
runs (gray bars). The example shows the associated 2-D histogram for CESM1(CAMS). For the CMIP5 models with test runs, the correlation
between the emulated local trends and each individual test run is indicated by a black cross. Since these correlations are nearly identical for
each test run of a specific climate model, the individual black crosses cannot be visually distinguished from one another. For all climate
models with test runs, the number of available test runs is given in brackets after the model name.

due to that fact that the global correlation pattern induced 6.3.3 Regional-scale ensemble reliability verification
by the global mean temperature variability serves as a more

important driver for the longest-range correlations. When considering full emulations, i.e., the local trends plus

the local variability, the median is successfully emulated but
the emulations are a bit underdispersive compared to the
training run for the vast majority of CMIP5 models and
SREX regions (Fig 12). The emulations tend to be more reli-
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Local variability verification of correlation of grid-point-level metrics:
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Figure 10. Local variability verification for the CMIP5 models (columns) by means of the Pearson correlation of grid-point-level lag-1
temporal autocorrelations (a) and standard deviations (b) between the 1000 individual emulations and the training runs (box plots). The
examples show the associated 2-D histograms for a single emulation and the training run of CESM1(CAMS). For the CMIP5 models with
test runs, the correlation between the quantity in the training run and in each individual test run is indicated by a black cross. For all climate
models with test runs available, the number of test runs is given in brackets after the model name.
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Figure 11. Local variability verification for the CMIP5 models (columns) by means of the Pearson correlation of cross-correlations between
grid points in three geographical bands (rows) between the 1000 individual emulations and the training runs (box plots). The geographical
bands cover distances below 2000 km (a), between 2000 and 15 000 km (b), and beyond 15 000 km (c¢). The examples show the associated
2-D histograms for a single emulation and the training run of CESM1(CAMS). For the CMIP5 models with test runs, the correlation between
the quantity in the training run and in each individual test run is indicated by a black cross. For all climate models with test runs available,
the number of test runs is given in brackets after the model name.
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able for climate models with larger localization radii (Fig. 7).
In North Asia (NAS), the underdispersion is strongest for
most models (Fig. 12). The only region where the emula-
tions are fully reliable is global land. The underdispersion
on the SREX regional scales is related to the regulariza-
tion, which dampens covariances between grid points as a
function of distance between them and is thus inherent to
the emulator’s design. The results are qualitatively similar
for the test runs but, as expected, the deviations from the
emulated quantiles tend to be larger in magnitude than for
the training runs. For most climate models, the strongest
deviations in the median of the test runs are observed in
global land, Canada—Greenland—Iceland (CGI), and South
Australia—New Zealand (SAU). Out of all climate models,
the least optimal fit is obtained for MIROCS, with the emu-
lated median being systematically warmer than the training
and especially the test run medians in many regions.

7 Discussion

7.1 Emulator design choices and their implications

7.1.1  Modular framework

A modular framework is chosen for the climate model em-
ulation because of its manifold advantages. First, the cali-
brated parameters of each emulator module can be used for
climate model intercomparison over a wide range of scales
since they can be readily visualized and easily interpreted
(Sects. 5.1 and 6.1). Second, the modular framework renders
it straightforward to substitute each emulator module with
approaches other than the ones chosen here. For example, al-
ternative approaches for the global mean temperature trend
(e.g., Meinshausen et al., 2011), for the local response mod-
ule (e.g., Tebaldi and Arblaster, 2014; Alexeeff et al., 2018),
or for the local residual temperature variability (e.g., Link
et al., 2019) could be employed. Third, if the modeling task
were to change, additional predictors could easily be inte-
grated. For example, precipitation emulation would likely re-
quire human-induced aerosol emissions as an additional pre-
dictor in the local response module (Frieler et al., 2012).

7.1.2 Emulating temperature trends

. . lob,trend . . . .
In this study, an estimate of Ttg O0-ene 15 retrieved with a sim-

ple statistical model from the training run (Sect. 4.1.2). How-
ever, it could alternatively be considered to obtain Y}gbb’trend
from a simple energy balance model (Meinshausen et al.,
2011). This would open avenues towards emulating initial-
condition ensembles across different T,glOb’trend trajectories
and thus different emission scenario pathways.

To translate Y}gmb’tmnd into a local temperature in the local
response module, a linear approach is chosen (Sect. 4.1.3).
The thereby obtained regression coefficients " repre-
sent well-known climate phenomena. The enhanced warming
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over land compared to the global mean (Sutton et al., 2007;
Hartmann et al., 2013) at many grid points is captured by
ﬂ;m“d > 1 (Figs. 3 and 7). The Arctic amplification (Serreze
and Barry, 2011) manifests itself in the large 8" values
in northern high latitudes (Fig. 3). The overall good perfor-
mance in capturing local trends is in line with the pronounced
linear scaling of regional land temperatures with global mean
temperature (Seneviratne et al., 2016; Wartenburger et al.,
2017) and the widely used linear pattern scaling approaches
(Mitchell, 2003; Tebaldi and Arblaster, 2014; Lynch et al.,
2017; Osborn et al., 2018).

7.1.3 Emulating temperature variability

Spatially coherent local variability is introduced in two em-
ulator modules, namely in the local response module as the
local response to T,‘glOb’Valr (Sect. 4.1.3) and in the local resid-
ual variability module (Sect. 4.1.4). The local variability is
an essential ingredient in mimicking initial-condition ensem-
bles as visualized by comparing the regionally averaged time
series of our emulations with simple pattern scaling results
which contain no local variability module (Fig. S11). In this
study, and all other studies cited in the following paragraphs,
the local temperature variability is assumed to be stationary
in time, which is not fulfilled everywhere in the business-as-
usual greenhouse gas emission scenario (see Sect. 2.3 and
Olonscheck and Notz, 2017).

Y}g]Ob‘Var can be regarded as the globally aggregated sig-
nal of all physical modes of variability (Sect. 4.1.2), with the
calibrated emulators accounting for memory of up to 3 years
(Fig. 7). While the linear translation of TlglOb’V'Elr to a grid-
point-level temperature response is purely statistical in na-
ture, physically meaningful patterns nevertheless emerge in
the B patterns. For example, for many climate models, 87"
tends to resemble an El Nifo—Southern Oscillation pattern
(Trenberth, 1997) with the Amazon, Australia, and Alaska
covarying, while the southeastern USA exhibits the oppo-
site temperature sign (Figs. 3 and S2-10). Qualitatively sim-
ilar results could alternatively be obtained by stochastically
generating time series of major physical modes of variability
and translating those to the grid-point level (McKinnon and
Deser, 2018).

Local residual variability is modeled as an AR process
with spatially correlated innovations (Sect. 4.1.4). While sev-
eral other authors have employed AR models with spatially
correlated innovations (Castruccio and Stein, 2013; Castruc-
cio and Genton, 2016; Bao et al., 2016), they all chose a
parametric approach to model the covariance between grid
points. However, in this study, a nonparametric approach is
employed, which retains regional-scale anisotropy in the un-
derlying data.
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Regional-scale verification: deviation of climate model runs from emulated quantiles
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Figure 12. Deviation of climate model runs from the emulated 5 % (a, d), 50 % (b, e), and 95 % (c, f) quantile for CMIP5 models (rows)
and regions (columns). The emulated quantile is computed based on 1000 emulations per climate model. The deviation of the climate model
run from the emulated quantile is given in color. Red means that the emulated quantile is warmer than the quantile of the climate model run,
and blue means that it is colder. The gray numbers indicate how many climate model run deviations lie outside the 95 % interval spanned by
the deviations of single emulations from the emulated quantiles. If the climate model run lies outside this interval, it is no longer considered
indistinguishable from the emulations. The deviation from the training run is shown in panels (a)—(c), and the average deviation across all
available test runs is shown in panels (d)—(f). The number of test runs averaged across is indicated in brackets behind the model names.

7.2 The pros and cons of training on single climate

ertheless, it is not possible to reproduce the characteristics

model runs of a true ESM at all spatial and temporal scales when train-

ing on a single run. To obtain the best possible emulations to

We demonstrated that, for yearly temperature at grid-point to be used, e.g., for uncertainty propagation in climate impact

regional scales, training on a single run per climate model or integrated assessment models, it is thus advisable to em-

is sufficient to learn the key properties of the climate sys- ploy all available runs for training instead of just a single one

tem of this climate model. Early results furthermore indi-  for each climate model. When training on multiple runs, the

cated that larger single-model initial-condition ensembles, in ~ parameters of the emulator can be estimated more robustly,

that case a 21-member CESM ensemble, can also be success- which, among other things, results in a larger localization ra-

fully emulated when training on a single ESM run (Beusch dius and thus the ability to reproduce farther-reaching spatial
et al., 2018). Since a single run was submitted for the major- cross-correlations between grid points.

ity of climate models participating in CMIPS5 for the emission
pathway considered here, requiring only one run to train the
emulator provides the opportunity to emulate a much larger
multi-model ensemble and thus to have the resulting su-
perensemble account for more inter-model uncertainty. Nev-
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7.3 Large single-model initial-condition vs. large
multi-model ensembles

Our results highlight fundamental differences between large
single-model initial-condition ensembles (Deser et al., 2012;
Fischer et al., 2013; Kay et al., 2015; Leduc et al., 2019; Ma-
her et al., 2019) and large multi-model ensembles (Meehl
et al., 2007; Taylor et al., 2012; Eyring et al., 2016).
While multi-model ensembles are imperfect, with several
ESMs exhibiting dependencies (Knutti, 2010; Bishop and
Abramowitz, 2013; Sanderson et al., 2015; Abramowitz
et al., 2019), multi-model uncertainty nevertheless clearly
exceeds single-model initial-condition uncertainty at the
yearly scale for temperature (Sect. 5.3). ESMs contained
within CMIP5 differ substantially across a broad range of
scales and thus sample different phase spaces in projections,
which renders it necessary to train an emulator on each cli-
mate model to approximate the CMIP5 ensemble. A single-
model initial-condition ensemble, on the other hand, can be
successfully mimicked on grid-point to regional scales by
training on a single ESM run (Sects. 5 and 6). While this lies
beyond the scope of this study, the developed emulator could
additionally serve as a novel tool to address the challenge
of inter-model dependencies. Differences between climate
models could be quantified in terms of their emulator param-
eters, and subsequently a subset of models with sufficiently
divergent parameters could be selected to base projections
on. Additionally, observations could be used to constrain the
emulated ensemble by providing validation measures for the
emulator parameters.

8 Conclusions and outlook

We introduce a modular framework for climate model emula-
tion of yearly land temperatures and present a specific, com-
putationally cheap implementation called MESMER, which
can create plausible temperature field time series within sec-
onds based on a single climate model training run. Our emu-
lator consists of (i) a global mean temperature module, (ii) a
local temperature response module, and (iii) a local resid-
ual temperature variability module. The global mean tem-
perature module contains a global mean temperature trend,
which is shared by all emulations, and a global mean tem-
perature variability term, which is modeled as an AR process
and varies between individual emulations. The local response
module is linear in nature and consists of a separate response
to the global mean temperature trend and the global mean
temperature variability. The local residual variability mod-
ule generates spatiotemporally correlated fields by means of
locally fit AR(1) processes with spatially correlated innova-
tions.

Since emulators approximate complex ESMs in a simpli-
fied manner, they are not able to accurately reproduce all
spatiotemporal ESM characteristics. The emulator presented
here, e.g., dampens covariations between grid points as a

Earth Syst. Dynam., 11, 139-159, 2020

function of distance in the local residual variability module
due to regularization. Thus, our emulator reliably reproduces
climate model variability at the grid-point level, but the em-
ulations are increasingly underdispersive for larger regional
averages and intermediate-range spatial teleconnections can-
not be accounted for. This caveat could be addressed by
further improving the local residual variability module im-
plementation with a focus on such teleconnections. Alterna-
tively, training on several ESM runs would increase the ro-
bustness of the estimated parameters and make it possible
to reproduce farther-reaching teleconnections within the cur-
rent emulator setup. Nevertheless, calibrating our emulator
on a single training run is sufficient to generate emulations
which are visually indistinguishable from true ESM runs.

Inherent inter-ESM differences in warming trends and spa-
tiotemporal variability make it necessary to calibrate a sep-
arate emulator for each of the 40 considered CMIP5 mod-
els. The resulting emulations successfully approximate the
training run for each climate model on grid-point to re-
gional scales. For CMIP5 models with more than one initial-
condition ensemble member, it was furthermore demon-
strated that the ensemble of emulations is generally able
to mimic true climate model initial-condition ensembles at
these scales. Hence, we argue that to sample climate signal
uncertainty for yearly temperature at grid-point to regional
scales, it is more advantageous to invest computational re-
sources into generating multi-model ensembles rather than
large single-model ensembles, since the latter can be readily
approximated by our emulator.

Superensembles such as the one generated in this study,
which contains 1000 emulations per climate model, are ex-
pected to be particularly helpful in regions with large interan-
nual variability. There, the very sparse sampling of the tem-
perature phase space by the CMIP5 ensemble may result in
biased conclusions when solely employing the CMIP5 en-
semble as an input to impact or integrated assessment mod-
els which estimate the effect of climate signal uncertainty on
their quantity of interest.

The emulator is designed to be flexible enough to emu-
late whatever climate model run it is provided with. Hence,
it is not part of the emulator’s tasks to judge the realism
of individual climate models. Instead, the choice of consid-
ered ESMs will depend on the scope of different applica-
tions. For example, results from emergent constraints anal-
yses (e.g., Hall and Qu, 2006; Eyring et al., 2019) could be
combined with the implementation of an emulator to derive
a superensemble based on an observationally constrained set
of ESMs. On the other hand, the emulator parameters could
themselves be used as potential constraints that can also be
derived from observations. Additionally, the emulator param-
eters can be regarded as an ESM-specific “model ID”, which
provides an interesting avenue for climate model intercom-
parison across a wide range of scales. Inter-model differences
can be readily visualized for every emulator module, result-
ing in comprehensible scale-dependent insights into the un-
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derlying properties of each climate model. Future work could
focus on extending the emulator to simultaneously generate
multivariate output. Furthermore, it would be interesting to
investigate how transferable an emulator trained on a spe-
cific greenhouse gas emission scenario is to other emission
pathways and which modules would need to be modified to
account for inter-scenario differences.

In conclusion, in this study we have presented a novel
ESM emulator called MESMER that can be trained to rep-
resent separate ESMs based on single realizations of the re-
spective ESMs and which has been shown to be able to emu-
late and expand multi-model ensembles such as CMIP5. We
expect that the developed emulator can serve as a training
ground for investigating the phase space of multi-model en-
sembles in new applications, e.g., related to the derivation of
emissions scenarios or the assessment of impacts under dif-
ferent emissions pathways.
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Appendix A

Table A1. List of the 40 employed CMIPS5 models, the modeling groups providing them, and the number of initial-condition ensemble
members used.

Model Modeling center (or group) Runs
ACCESS1.0 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology 1
(BOM), Australia
ACCESS1.3 Commonwealth Scientific and Industrial Research Organization (CSIRO) and Bureau of Meteorology 1
(BOM), Australia
BCC-CSM1.1(m) Beijing Climate Center, China Meteorological Administration 1
BCC-CSM1.1 Beijing Climate Center, China Meteorological Administration 1
BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 1
CanESM2 Canadian Centre for Climate Modeling and Analysis 5
CCSM4 National Center for Atmospheric Research 6
CESM1(BGC) Community Earth System Model Contributors 1
CESM1(CAMS) Community Earth System Model Contributors 3
CMCC-CESM Centro Euro-Mediterraneo per I Cambiamenti Climatici 1
CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti Climatici 1
CMCC-CMS Centro Euro-Mediterraneo per I Cambiamenti Climatici 1
CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de Recherche et Formation Avancée 5
en Calcul Scientifique
CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Research Organization in collaboration with Queensland 10
Climate Change Centre of Excellence
EC-EARTH EC-EARTH consortium 6
FGOALS-g2 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua University 1
FIO-ESM The First Institute of Oceanography, SOA, China 3
GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory 1
GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory 1
GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory 1
GISS-E2-H-CC NASA Goddard Institute for Space Studies 1
GISS-E2-H NASA Goddard Institute for Space Studies 1
GISS-E2-R-CC NASA Goddard Institute for Space Studies 1
GISS-E2-R NASA Goddard Institute for Space Studies 2
HadGEM2-AO National Institute of Meteorological Research/Korea Meteorological Administration 1
HadGEM2-CC Met Office Hadley Centre 1
HadGEM2-ES Met Office Hadley Centre (additional realizations contributed by Instituto Nacional de Pesquisas Espaciais) 4
INM-CM4 Institute for Numerical Mathematics 1
IPSL-CMS5A-LR Institut Pierre Simon Laplace 4
IPSL-CM5A-MR Institut Pierre Simon Laplace 1
IPSL-CM5B-LR Institut Pierre Simon Laplace 1
MIROCS Atmosphere and Ocean Research Institute (the University of Tokyo), National Institute for Environmental 3
Studies, and Japan Agency for Marine—Earth Science and Technology
MIROC-ESM-CHEM  Japan Agency for Marine—Earth Science and Technology, Atmosphere and Ocean Research Institute 1
(the University of Tokyo), and National Institute for Environmental Studies
MIROC-ESM Japan Agency for Marine—Earth Science and Technology, Atmosphere and Ocean Research Institute 1
(the University of Tokyo), and National Institute for Environmental Studies
MPI-ESM-LR Max-Planck-Institut fiir Meteorologie (Max Planck Institute for Meteorology) 3
MPI-ESM-MR Max-Planck-Institut fiir Meteorologie (Max Planck Institute for Meteorology) 1
MRI-CGCM3 Meteorological Research Institute 1
MRI-ESM1 Meteorological Research Institute 1
NorESM1-ME Norwegian Climate Centre 1
NorESM1-M Norwegian Climate Centre 1
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