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Abstract. This study examines methods of calibrating projections of future regional climate for the next 40–
50 years using large single-model ensembles (the Community Earth System Model (CESM) Large Ensemble
and Max Planck Institute (MPI) Grand Ensemble), applied over Europe. The three calibration methods tested
here are more commonly used for initialised forecasts from weeks up to seasonal timescales. The calibration
techniques are applied to ensemble climate projections, fitting seasonal ensemble data to observations over a
reference period (1920–2016). The calibration methods were tested and verified using an “imperfect model”
approach using the historical/representative concentration pathway 8.5 (RCP8.5) simulations from the Coupled
Model Intercomparison Project 5 (CMIP5) archive. All the calibration methods exhibit a similar performance,
generally improving the out-of-sample projections in comparison to the uncalibrated (bias-corrected) ensemble.
The calibration methods give results that are largely indistinguishable from one another, so the simplest of
these methods, namely homogeneous Gaussian regression (HGR), is used for the subsequent analysis. As an
extension to the HGR calibration method it is applied to dynamically decomposed data, in which the underlying
data are separated into dynamical and residual components (HGR-decomp). Based on the verification results
obtained using the imperfect model approach, the HGR-decomp method is found to produce more reliable and
accurate projections than the uncalibrated ensemble for future climate over Europe. The calibrated projections for
temperature demonstrate a particular improvement, whereas the projections for changes in precipitation generally
remain fairly unreliable. When the two large ensembles are calibrated using observational data, the climate
projections for Europe are far more consistent between the two ensembles, with both projecting a reduction in
warming but a general increase in the uncertainty of the projected changes.

1 Introduction

To make informed assessments of climate impacts and imple-
ment relevant adaptation strategies, reliable climate projec-
tions are important for policymakers and other stakeholders
(e.g. Field et al., 2012). There is particular demand for cli-
mate projections on regional scales for the next 40–50 years;
however, such predictions are currently very uncertain (e.g.
Stocker et al., 2013; Knutti and Sedláček, 2013). One ex-
ample of the demand for improved regional climate projec-
tions is the EU-funded “European Climate Prediction sys-

tem” project (EUCP), which aims to produce reliable Euro-
pean climate projections from the present to the middle of
the century (Hewitt and Lowe, 2018). In this study, which is
a part of the EUCP project, we examine methods of improv-
ing the accuracy and reliability of climate projections over
the European region.

There are a myriad of factors that contribute to the un-
certainty in projections of future regional climate. One large
factor is the uncertainty in greenhouse gas emissions and
associated future radiative forcing anomalies (e.g. Pachauri
et al., 2014). In this study we will focus only on estimat-
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ing uncertainty of the physical climate system itself in re-
sponding to changing greenhouse gas forcing by focusing on
a single representative concentration pathway (RCP), follow-
ing the Coupled Model Intercomparison Project 5 (CMIP5)
protocol (Taylor et al., 2012). The majority of analyses of
coupled model projections are based upon multi-model en-
sembles, which combine projections from multiple different
coupled ocean–atmosphere climate models. One strength of
a multi-model ensemble is that, if each of the models has dif-
ferent structural deficiencies and associated errors, then these
will not overly influence the ensemble projection. In seasonal
forecasting, for example, multi-model products have been
found to outperform the individual models in several studies
(e.g. Palmer et al., 2004; Hagedorn et al., 2005; Baker et al.,
2018). Multi-model ensembles of coupled climate models
provide a range of plausible scenarios for the historical and
future evolution of the physical climate system. The simplest
treatment of these models is to assume that each is equally
likely, sometimes referred to as “model democracy” (e.g.
Knutti, 2010). However, this approach assumes that models
are independent and that they each represent an equally plau-
sible representation of the climate system, neither of which
is typically well justified (e.g. Gleckler et al., 2008; Knutti
et al., 2013).

Several methods have been developed that go beyond
model democracy and instead weight models based on their
performance in an attempt to improve the representation of
uncertainty in multi-model ensembles. One step away from
model democracy is to downweight models in the ensemble
that are not independent from one another (e.g. Sanderson
et al., 2015), as has often found to be applicable in CMIP5-
based studies. An additional or alternative approach is to
weight models based on their past performance with respect
to an observational benchmark, which could be the climatol-
ogy of one or multiple fields (e.g. Giorgi and Mearns, 2002,
2003; Knutti et al., 2017; Sanderson et al., 2015; Merrifield
et al., 2020) or the ability of models to capture past changes
(e.g. Kettleborough et al., 2007). In a recent paper, Brun-
ner et al. (2019) applied a model weighting technique to the
CMIP5 climate projections over the European region. The
model weighting was found to constrain the large spread in
the CMIP5 models and reduce the implied uncertainty in the
multi-model projections of European climate over the com-
ing decades.

A weakness of multi-model ensembles, however, is that
the different externally forced climate response in each of
the models can be difficult to isolate from internal variabil-
ity. This is particularly problematic when each model typi-
cally only consists of a few ensemble members or less, as is
the case with most models in CMIP5. To overcome the prob-
lem of disentangling the forced model response from the in-
ternal variability, several modelling groups have performed
large single-model ensemble simulations, using 40 ensem-
ble members or more (e.g. Deser et al., 2020). When dealing
with such large ensemble sizes, the ensemble mean provides

a good estimate of the externally forced signal, and devia-
tions from this can reasonably be interpreted as the internal
variability of the coupled climate system. A further strength
of large ensembles is that they can be used to effectively at-
tribute climate variability to changes in large-scale circula-
tion. For example Deser et al. (2016) used a large ensemble to
demonstrate that the observed wintertime temperature trends
over the second half of the century were due to a combination
of forced thermodynamic changes and a dynamically driven
temperature trend that was not clearly externally forced. We
will use the separation of the large ensembles into forced sig-
nals and internal variability, as well as the separation of each
into dynamical and thermodynamical components, to exam-
ine different methods of calibrating projections of European
climate.

Despite large ensembles providing clearer estimates of
forced climate signal and internal variability, it is obvious
that these ensembles will not perfectly represent observed
climate variability, which is also the case with the multi-
model ensembles. In this study, we explore the extent to
which large-ensemble climate projections can be calibrated
over the observational period to adjust and potentially im-
prove future projections. The general calibration approach
relies upon the large ensemble being clearly separable into
a forced signal component and residual internal variabil-
ity (e.g. Deser et al., 2014). Calibration techniques have
previously been applied to output from initialised seasonal
forecasts (as well as shorter-range forecasts) and have been
demonstrated to reduce the forecast error and, perhaps more
crucially, improve the reliability of the probabilistic forecasts
(Kharin and Zwiers, 2003; Doblas-Reyes et al., 2005; Man-
zanas et al., 2019). In addition to seasonal timescales, cali-
bration techniques have also been shown to be effective on
the output from decadal prediction systems (Sansom et al.,
2016; Pasternack et al., 2018). However, these types of en-
semble calibration techniques have not previously been ap-
plied to ensemble climate model projections. Here we ap-
ply ensemble calibration techniques to uninitialised large-
ensemble climate projections, focusing on European regions,
to test whether these ensembles can be calibrated to give
reliable probabilistic climate projections for the next 40–
50 years.

The paper is organised as follows. The datasets, verifica-
tion techniques and calibration methods are described in the
next section. In Sect. 3, we present results from the different
calibration methods, namely, “variance inflation”, “ensemble
model output statistics” and “homogeneous Gaussian regres-
sion”. These calibration methods are applied to, and verified
against, CMIP5 model data and also applied to observations.
Conclusions follow in Sect. 4.
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2 Datasets and methods

2.1 Model and observational datasets

In this study we use two different large-ensemble coupled cli-
mate model datasets. The first is from the Community Earth
System Model version 1 (CESM1) Large Ensemble (Kay
et al., 2015), hereafter referred to as “CESM1-LE”, which
consists of 40 members initialised from with random round-
off error from a single ensemble member in 1920 and freely
evolving thereafter. Each ensemble member is performed
with identical external forcing, following the CMIP5 proto-
col for the 1920–2005 historical period and the representative
concentration pathway 8.5 (RCP8.5) over the period 2006–
2100. The second large-ensemble dataset is the Max Planck
Institute (MPI) Grand Ensemble (Maher et al., 2019), here-
after referred to as “MPI-GE”, which is similar to CESM1-
LE but uses the MPI Earth System Model and consists of
100 members starting in 1850, each initialised from a differ-
ent initial conditions taken from a long pre-industrial control
simulation. MPI-GE is integrated through to 2099 using var-
ious CMIP5 forcing scenarios, but here we use the RCP8.5
data to compare with CESM1-LE. We only use 99 members
of the MPI-GE that had all of the variables used here avail-
able at the time of carrying out the analysis. For both datasets
we use data over the period 1920–2060, which is covered by
both large-ensemble datasets. The near-term (≈ 1–40 years)
period is the primary period of interest of the EUCP project.

Observational data for surface air temperature and precip-
itation are taken from the CRU-TS v4.01 gridded surface
dataset (Harris et al., 2014). The observational sea-level pres-
sure (SLP) data are taken from the HadSLP2 dataset (Al-
lan and Ansell, 2006) for the results presented below; how-
ever, we tested the sensitivity to the choice of observational
SLP dataset by using the 20th Century Reanalysis v3 (20CR;
Compo et al., 2011). The results were generally very similar
regardless of the observational datasets; however, some of the
differences from the observational dataset are highlighted in
Sect. 3.5.

The data used for out-of-sample verification were taken
from the CMIP5 archive (Taylor et al., 2012). We take the
first ensemble member for the 39 models that cover the
1920–2060 period for the historical (up to 2005) and RCP8.5
(from 2006) scenarios. The CESM1-LE has a 1◦× 1◦ hori-
zontal resolution in the atmosphere (with 30 vertical levels),
which is generally comparable or higher resolution than the
models in the CMIP5 ensemble. The MPI-GE has a com-
paratively low T63 spectral resolution (equivalent to around
a 2◦ horizontal resolution), with 40 levels in the vertical.
Data from the CMIP5 models, MPI-GE ensemble and the
observational datasets were regridded to the same grid as the
CESM1-LE dataset prior to the analysis. Tests on a small
subset of the results showed that the results were not sensi-
tive to the regridding procedure.

Figure 1. The SREX regions over which area-averaged projections
and observations are analysed in this study, following Field et al.
(2012).

We analyse the evolution and projections of surface air
temperature (referred to as temperature hereafter) and precip-
itation over the three European SREX regions (Field et al.,
2012). These are the Northern Europe, Central Europe and
Mediterranean regions, which are shown in Fig. 1 and will
be hereafter referred to as NEUR, CEUR and MED, re-
spectively. Our analysis focuses on projections of seasonal
mean climate for European summer (defined as the June–
July–August average) and winter (defined as the December–
January–February average).

2.2 Verification metrics

The impact of the calibration is assessed through a series
of verification metrics. The root-mean-square error (RMSE)
is a simple measure of the accuracy of the ensemble mean
prediction. In addition, the spread of the ensemble is also
calculated, which is defined as the square root of the mean
ensemble variance over the verification period (e.g. Fortin
et al., 2014). By calculating the RMSE and spread, we are
able to estimate the reliability of the ensemble by calculating
the spread / error ratio, which for a perfectly reliable ensem-
ble will be equal to 1 (e.g. Jolliffe and Stephenson, 2012). A
spread / error ratio greater than 1 indicates an underconfident
ensemble, whereas a spread / error ratio less than 1 indicates
an overconfident ensemble. The final metric that we will
consider is the continuous rank probability score (CRPS),
which is a probabilistic measure of forecast accuracy that is
based on the cumulative probability distribution (e.g. Hers-
bach, 2000; Wilks, 2011; Bröcker, 2012). The CRPS mea-
sures where the verification data point lies with respect to the
underlying ensemble and is higher when the verification data
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are further from the centre of the ensemble. As such, a lower
CRPS value represents a more skilful probabilistic forecast.

2.3 Ensemble calibration methods

We will assess the effectiveness of calibrating ensemble cli-
mate projections using a series of different calibration tech-
niques, which are outlined in this section. The calibrations
are performed separately for each region and season, on an-
nually resolved indices.

2.3.1 Uncalibrated ensemble

The benchmark for the calibration methods is the uncali-
brated ensemble. Here we use the term uncalibrated ensem-
ble to refer to an ensemble that has been bias-corrected by re-
moving the mean value over a particular reference period. Of
course, this is not strictly an uncalibrated ensemble, but this
is the most common way that climate projections are pre-
sented in the literature (e.g. Hawkins and Sutton, 2016). In
the analysis that follows the reference period is always the
same as for the corresponding calibration methods, which is
generally the observational period 1920–2016 in the follow-
ing analysis.

2.3.2 Variance inflation (VINF)

One calibration method that we will test is variance inflation,
hereafter referred to as VINF, following Doblas-Reyes et al.
(2005). For each uncalibrated ensemble member, Xuncalib,
VINF adjusts the ensemble mean signal, Xm, and anomaly
with respect to the ensemble mean, Xens-anom, from the un-
calibrated ensemble. The uncalibrated ensemble can be ex-
pressed in these terms as

Xuncalib(t,e)=Xm(t)+Xens-anom(t,e). (1)

Here t and e indicate dependence on time and ensemble
member, respectively. The VINF method produces a cali-
brated ensemble, Xcalib, through the following scaling:

Xcalib(t,e)= αXm(t)+βXens-anom(t,e). (2)

The scaling variables α and β are calculated as

α = ρ
sr

sm
, (3)

β =

√
1− ρ2 sr

suncalib
, (4)

where sr is the standard deviation of the reference (or ob-
servational) data that are being calibrated towards, sm is
the standard deviation of the ensemble mean, suncalib is the
square root of the mean variance of the uncalibrated ensem-
ble members, and ρ is the correlation between the ensemble
mean signal and the reference dataset over the calibration pe-
riod. Where ρ is less than 0 and there is no skilful correlation

between the ensemble and the reference dataset, we set ρ to
be 0 in the calibration. VINF scales the signal and ensemble
spread but maintains the underlying correlation and ensem-
ble distribution, rather than fitting a parametric distribution
as in the following methods.

2.3.3 Ensemble model output statistics (EMOS)

The next calibration method is the ensemble model output
statistics approach, hereafter referred to as EMOS (Gneiting
et al., 2005). The EMOS method has widely been applied to
the output of ensemble prediction systems for medium-range
and seasonal forecasts. EMOS involves fitting a parametric
distribution to the underlying data, such that the uncalibrated
is expressed as

Xuncalib(t)=Xm(t)+ εuncalib(t), εuncalib(t)=N [0, s2(t)] (5)

and the calibrated ensemble is expressed as

Xcalib(t)= bXm(t)+ εcalib(t), εcalib(t)=N [0,c+ ds2(t)], (6)

where N [µ,σ 2
] is a Gaussian distribution with mean µ and

variance σ 2 and s2 is the time-dependent variance across the
ensemble. The coefficients b, c and d are found using nu-
merical methods to minimise the CRPS over the calibration
period (Gneiting et al., 2007). The coefficients b, c and d are
constrained to be non-negative values. The EMOS technique
is arguably the most general method we will test because it
allows for meaningful differences in spread across the en-
semble at different times (i.e. the coefficient d), so it is some-
times referred to as “nonhomogeneous Gaussian regression”
(e.g. Wilks, 2006; Tippett and Barnston, 2008). EMOS rep-
resents a simplification over the VINF method because the
ensemble distribution is parameterised as Gaussian. In this
study, the EMOS technique is used to produce 1000 sam-
pled ensemble members in the ensemble projection. To avoid
“overfitting” to the observations when producing the ensem-
bles and to include some measure of sampling uncertainty in
the parameter fitting process, the EMOS method is applied to
randomly resampled years (with replacement) from the cal-
ibration period, to produce 1000 valid combinations of the
coefficients b c and d. These combinations are used to pro-
duce the 1000 sampled ensemble members used to produce
the calibrated projection.

2.3.4 Homogeneous Gaussian regression (HGR)

The third calibration method that we test is homogeneous
Gaussian regression, hereafter referred to as HGR. The HGR
method is a simplified version of EMOS, in which the cali-
brated variance is constant in time and is expressed as

Xcalib(t)= bXm(t)+ εcalib(t), εcalib(t)=N [0,c]. (7)

Effectively, this method assumes that there is no informa-
tion in the time variation of the ensemble spread. The coeffi-
cients b and c are found as in EMOS and are constrained to
be greater than or equal to 0.

Earth Syst. Dynam., 11, 1033–1049, 2020 https://doi.org/10.5194/esd-11-1033-2020
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2.4 Dynamical decomposition of climate anomalies

In this study we will test calibrating the full variables as
well as calibrating dynamically decomposed variables. The
dynamical decomposition aims to express variables – sur-
face air temperature and precipitation in this case – as a
dynamical and residual component. The rationale for test-
ing this on the calibration methods is that they may be
fitting a thermodynamic signal in the ensemble to some-
thing that is dynamically driven in the reference (or obser-
vational) data and therefore conflating different mechanisms.
Dynamical decomposition has previously been used to un-
derstand observed large-scale climate variability on decadal
timescales where there is a contribution from the thermo-
dynamic climate change signal and large-scale circulation
anomalies (e.g. Cattiaux et al., 2010; Wallace et al., 2012;
Deser et al., 2016; Guo et al., 2019). The dynamical decom-
position splits the variables at each grid-point over Europe
into full= dynamical+ residual.

The dynamical component was calculated for all model
ensemble members, CMIP5 models and observations follow-
ing the analogue method of Deser et al. (2016). The method
here is exactly the same as that used in O’Reilly et al. (2017),
which provides full details. In this method, SLP anomaly
fields for each month are fitted using other SLP anomaly
fields from the corresponding month from other years over
the reference/observational period (1920–2016). This regres-
sion fit yields weights which are then used to compute the
associated dynamical surface temperature or precipitation
anomaly. Each field can then be separated into a dynami-
cal and residual component. An example of the dynamical
decomposition of the CESM1-LE projection into dynam-
ical and residual components is shown in Fig. S1 in the
Supplement (and also in the example calibration schematic
in Fig. 3). The regional dynamical and residual time series
were calibrated using the above techniques towards the corre-
sponding dynamical and residual time series from the target
dataset (i.e. CMIP5 or observations over the period 1920–
2016). The calibrated dynamical and residual time series are
then combined to give a full calibrated ensemble projection;
further detail is provided in the following section. Results
from the calibrated dynamical decomposition are shown later
in the paper for the HGR method and referred to as HGR-
decomp.

3 Results

3.1 An example ensemble calibration

Before we begin our analysis, it is useful to motivate our ap-
proach by briefly describing an example calibration. A syn-
thetic, randomly generated 100-member ensemble is shown
in Fig. 2, alongside a synthetic observational index. There
is a large spread across the ensemble, with the reference fre-
quently lying close to the ensemble mean. The lower panel of

Figure 2. (a) Synthetic data for an example (bias-corrected) ensem-
ble temperature evolution are shown for the ensemble mean in red
and 90 % ensemble range (shaded), along with the synthetic (ob-
servational) reference index in black. (b) The synthetic ensemble
calibrated using the variance inflation method to match the refer-
ence dataset is shown in blue, with the raw ensemble mean shown
in dashed red. The RMSE, spread / error ratio and CRPS calculated
for the raw ensemble and the calibrated ensemble are all shown.

Fig. 2 shows the ensemble calibrated towards the reference
data using the VINF method. The VINF method scales the
ensemble mean and spread to make the ensemble reliable in
a probabilistic sense. The improvement of the calibrated en-
semble is clear from the reduction in error and CRPS, which
is also shown in Fig. 2. Also, it is important to note that the
calibrated ensemble is perfectly reliable over the reference
period, as indicated by the spread / error ratio being equal
to 1 after calibration. The EMOS and HGR methods would
have yielded almost identical results for this synthetic ensem-
ble.

It is clear from the example shown in Fig. 2 that it is trivial
to calibrate an ensemble to known data such that it is per-
fectly reliable. Of more interest here is whether calibrating
to observed data can improve the accuracy and reliability of
a prediction outside of the reference period used for the cali-
bration.
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3.2 Comparing calibration techniques using an
“imperfect model” test

Our aim in this study is to test how calibrating large-
ensemble projections using observations will influence the
accuracy and reliability of the projections. The common pe-
riod of the large ensembles and observations used in this
study is 1920–2016, so we can in principle calibrate the en-
sembles using this period. However, we cannot test how ef-
fective this calibration is in the out-of-sample future period.
To examine the performance of the calibration we employ an
“imperfect model” test, using 39 CMIP5 models. In this test,
the large-ensemble dataset is calibrated to each of these 39
models over the reference period, 1920–2016. The future pe-
riod from the CMIP5 realisation is then used to analyse the
impact of the calibration by verifying against the calibrated
large ensemble in the out-of-sample period, 2017–2060. We
refer to this as an imperfect model test because, in this ap-
proach, the large-ensemble calibration is tested mostly on
simulations from different climate models. This is a strength
of the imperfect model test, as the observations can, in some
sense, be considered an out-of-sample test. In addition to the
1920–2016 calibration period, we also tested the calibration
over shorter periods (some examples are shown in Fig. S8).
Overall, the calibration was found to perform better over the
longer periods, so in this study we focus on the results of
the calibration on the longest available common period (i.e.
1920–2016).

An example of calibrating a large-ensemble projection to
a CMIP5 model index is shown in the left-hand column in
Fig. 3. In this example, the uncalibrated CESM1-LE data for
CEUR summer temperature are shown in red, along with the
same index from one of the CMIP5 models over the refer-
ence period (1920–2016). The model is calibrated towards
data from the CMIP5 model realisation over the reference pe-
riod. Following the calibration step, the CMIP5 data from the
future period (2017–2060), which was withheld prior to the
calibration, are used to verify the uncalibrated and calibrated
large-ensemble projections using each individual year in the
verification period. The verification is performed on 44 pairs
of probabilistic predictions and validation data points from
this future period (2017–2060). From each of the CMIP5
models, we can therefore calculate verification statistics (i.e.
RMSE, spread/error ratio, CRPS). The process is then re-
peated for each of the 39 CMIP5 models, and the distribution
of these verification statistics is presented in the results that
follow. We performed this analysis for each of the calibration
methods using both the CESM1-LE and MPI-GE datasets.
The analysis for both temperature and precipitation, for sum-
mer and winter, and over all three European regions is pre-
sented and discussed below.

The verification statistics for the CESM1-LE summer tem-
perature for the uncalibrated ensemble and the three calibra-
tion methods are shown in Fig. 4. The distribution of the ver-
ification statistics over the 39 models is shown, with the hor-

izontal lines indicating the median of the distribution. The
black crosses indicate where the verification of the calibrated
ensemble is significantly better than the verification of the
uncalibrated ensemble at the 90 % confidence level, calcu-
lated using the non-parametric Mann–Whitney U test (e.g.
Wilks, 2011). For the summer temperature over all three re-
gions, all of the calibration methods significantly lower the
RMSE of the ensemble projection compared with the uncali-
brated ensemble. The calibration methods generally perform
similarly, acting to typically reduce the spread of the uncali-
brated ensemble and narrowing the range of the spread / error
ratios in the verification compared to the uncalibrated en-
semble. There is significant improvement in reliability, indi-
cated by the spread–error relationship, for the CEUR region
with all three calibration methods. The CRPS is significantly
lower for all of the calibration methods in all regions, demon-
strating that the calibrations are improving the probabilis-
tic predictions of summer temperature by the CESM1-LE
ensemble in the out-of-sample future period. An important
point to note is that, despite not being a significant improve-
ment for all the verification metrics shown in Fig. 4, none
of the calibration methods ever has a significantly negative
impact on the projections.

We also performed the same testing described above for
the CESM1-LE on the MPI-GE. The verification measures
for the MPI-GE summer temperature are shown in Fig. S2.
The performance of the calibration methods on the MPI-GE
summer temperature is qualitatively similar to that for the
CESM1-LE (shown in Fig. 4). The calibration methods in
general improve the out-of-sample verification statistics, re-
sulting in a more accurate and reliable projection over the
three European regions compared to the uncalibrated ensem-
ble. Again, there is a particularly notable improvement for
the CEUR region, as with the CESM1-LE data (i.e. Fig. 4).
For the other regions there is an improvement over the un-
calibrated ensemble, but this is not significant for any of the
calibration methods or for any of the verification measures.
Nonetheless, as in the CESM1-LE data, none of the calibra-
tion methods displays a significantly negative impact on the
projections.

The comparison of the ensemble calibration methods for
the summer temperature suggests that there is no significant
difference between the performance of the different methods,
for both of the large ensembles (i.e. Figs. 4 and S2). Analysis
of the equivalent figures for precipitation (Figs. S3 and S4),
as well as for the winter season (not shown), also demon-
strates a reasonably consistent performance between the cal-
ibration methods. The similarity of the performance of the
calibration methods indicates that the extra information in-
cluded in the VINF and EMOS calibrations, compared with
the HGR calibration, is not important to the performance.
Therefore, we will focus on the simplest method of the three,
HGR, for the analysis that follows.

The out-of-sample verification results for the HGR method
for temperature and precipitation for both summer and winter
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Figure 3. An example showing the steps of the full calibration methods (left-hand column) and calibration of the dynamically decomposed
variables (right column). This example is the calibration of the summer (JJA) Central European (CEUR) temperature using the CESM1-LE
and one of the CMIP5 models. The shading shows the 5–95 % range of the CESM1-LE ensemble. The effectiveness of the calibration is
assessed by verifying over data from the period 2017–2060, which is withheld during the calibration step.

seasons for the calibrated CESM1-LE projections are shown
in Fig. 5 (note that the red and orange data in the first col-
umn are the same as those shown in Fig. 4). The equivalent
verification plot for the MPI-GE dataset is shown in Fig. S2,
and the results are, generally, qualitatively similar to those
shown for the CESM1-LE dataset in Fig. 5. The improve-

ment for the winter temperature in terms of RMSE is not as
clear as in the summer season, but the reliability of the en-
semble projections is improved significantly over the NEUR
region. There is also some improvement for the precipita-
tion projections in some regions, particularly in terms of the
spread / error ratios of the regional precipitation projections.

https://doi.org/10.5194/esd-11-1033-2020 Earth Syst. Dynam., 11, 1033–1049, 2020
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Figure 4. Comparison of calibration methods applied to the CESM1-LE summer temperature projections calibrated to the CMIP5 models
over the observational period (1920–2016) and verified using the 44 years in the out-of-sample period (2017–2060). The verification statistics
for each of the individual CMIP5 models are shown in dots, the interquartile range of this distribution is shown by the solid bars and the
median is indicated by the horizontal lines. For the calibrated RMSE, spread / error ratio and CRPS values, the black crosses indicate where
the calibration represents a significant improvement over the uncalibrated (but bias-corrected) ensemble at the 90 % significance level. The
significance levels were calculated using the non-parametric Mann–Whitney U test, applied to the distributions of the verification scores
from the 39 CMIP5 models.

The spread of the uncalibrated CESM1-LE data seems to be
larger than is appropriate for the targeted indices, particularly
for precipitation, which is evident in the general reduction in
spread in the calibrated ensemble. The spread / error ratios
of the calibrated ensembles are consistently close to 1; this is
a particularly notable improvement for the uncalibrated en-
sembles over the NEUR region, which are generally under-
confident prior to calibration. For some other regions, there
is a smaller improvement or no noticeable difference. Cru-
cially, the influence of the calibration on the spread / error
ratio is not significantly negative for any of the variables,
regions or seasons, indicating that the calibration generally
improves the reliability of the projections. The only verifica-
tion statistic where the calibrated ensemble performs signif-
icantly worse than the uncalibrated ensemble is the RMSE
for the NEUR winter precipitation in the CESM1-LE dataset
(Fig. 5). Whilst it is only one of the verification measures per-
formed across both the CESM1-LE and MPI-GE datasets, it
is a concern because it reduces how much confidence we can
have in applying the calibration using observations.

3.3 Examining calibration using dynamically
decomposed variables

One potential problem with the calibration methods exam-
ined in the previous section is that they are calibrated towards
a single (observational) index. The implicit assumption with
this calibration approach is that the forced signal in the large
ensembles is scaled based on the co-varying signal in the ref-
erence/observational index. However, we might expect the
forced climate change signal to be largely thermodynamic
in nature rather than being driven by changes in large-scale
circulation, particularly for temperature. It is possible there-
fore that, when fitting the calibration of the ensemble to the
reference, there is an incorrect conflation of, for example,
the forced thermodynamic response with a circulation-driven
signal associated with internal variability in the reference in-
dex. To account for this potential shortcoming in the calibra-
tion method, we used a dynamical decomposition method (as
outlined above in Sect. 2.4) to split the model and observa-
tions datasets into a dynamical component, associated with
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Figure 5. Overview of verification of the HGR and HGR-decomp calibration methods compared with the uncalibrated CESM1-LE data in
the European regions. Results are shown for all of the verification measures, for both summer and winter seasons and for temperature and
precipitation. The verification statistics for each of the individual CMIP5 models are shown in dots, the interquartile range of this distribution
is shown by the solid bars and the median is indicated by the horizontal lines. For the calibrated RMSE, spread / error ratio and CRPS values,
the black crosses indicate where the calibration represents a significant improvement over the uncalibrated (but bias-corrected) ensemble at
the 90 % significance level. Black circles indicate where the calibration is significantly worse than the uncalibrated ensemble (at the 90 %
level). Black boxes indicate where the HGR-decomp method of calibration is significantly better than the HGR method (at the 90 % level).
The significance levels were calculated using the non-parametric Mann–Whitney U test, applied to the distributions of the verification scores
from the 39 CMIP5 models.

large-scale circulation anomalies, and a residual component,
which can often be interpreted as a thermodynamic compo-
nent.

An example of the dynamical decomposition, applied to
summertime projections for the CEUR region in the CESM1-
LE dataset, is shown in Fig. 3 (and also Fig. S1). In this ex-
ample, the future temperature response is largely associated
with the residual, representing the local thermodynamic re-
sponse to increased greenhouse gas concentrations. There is
also some dynamical contribution to the signal, but this also
contributes to the uncertainty in the overall ensemble pro-
jection. In contrast, there is a much weaker signal in future
precipitation changes, and the modest drying signal that is
projected seems to be mostly due to dynamical changes.

We will now examine how calibrating the dynamically de-
composed parts of the ensemble projection (e.g. the dynam-
ical and residual components) separately, against the respec-
tive decomposed parts of the reference indices, before re-
combining affects the ensemble calibration performance. A
demonstration of this process applied to one of the CESM1-
LE projections is shown in Fig. 3. The large-ensemble pro-
jection and reference dataset are both separated into dynami-
cal and residual components. These are then calibrated sepa-
rately, which in this particular example reduces the dynami-
cal signal substantially. Next, the calibrated decomposed pro-
jections are recombined to produce the total calibrated pro-
jection. This total calibrated projection is then used to cal-
culate verification statistics, in the same way as for the full
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calibration techniques examined previously. We use the HGR
method to perform the calibration on the dynamically decom-
posed data, and we refer to this method as “HGR-decomp”
hereafter.

Verification results for the HGR-decomp methods are
shown for both temperature and precipitation and for all re-
gions in Fig. 5, alongside the HGR verification results (with
the equivalent verification for the MPI-GE shown in Fig. S5)
As with the HGR verification, the crosses (circles) indi-
cate where the verification statistics of the HGR-decomp-
calibrated ensemble are significantly better (worse) than the
uncalibrated ensemble. The HGR-decomp calibration gener-
ally performs better than the uncalibrated ensemble, and for
none of the verification measures does the HGR-decomp cal-
ibration perform significantly worse than the uncalibrated en-
semble. This is in contrast with the HGR calibration method,
for which there is a significant increase in the RMSE for the
wintertime precipitation in the NEUR region.

To formally compare the HGR-decomp and HGR, we as-
sessed the significance of the difference in the verification
measures of the two methods. In Fig. 5, the black boxes in-
dicate where either of the calibration methods is found to be
significantly better than the other, at the 90 % level (based
on a Mann–Whitney U test). The only statistically signifi-
cant differences are seen for the spread / error ratio verifica-
tion, where four of the regions/variables are significantly bet-
ter for the HGR-decomp method applied to the CESM1-LE
dataset. In contrast, none of the verification measures for any
of the regions/variables are significantly worse for the HGR-
decomp method. The HGR-decomp method also performs
better for the calibrated MPI-GE indices (Fig. S5), albeit with
a lower level of significance. Specifically, in 10 of the 12 to-
tal regions/variables verified for the MPI-GE dataset, HGR-
decomp calibration is found to be more reliable in terms of
spread / error ratio than the HGR calibration.

Overall, the HGR-decomp method is found to be an im-
provement over the HGR method, and it very clearly out-
performs the uncalibrated ensembles. The improvement of
the HGR-decomp method over the HGR method is clear-
est in the reliability of the projection, as measured in terms
of spread / error ratio. The spread / error ratio is consistently
higher in the HGR-decomp calibration, primarily due to the
spread, which is consistently larger in the HGR-decomp-
calibrated ensemble. Calibrating on the dynamical and resid-
ual components separately has the effect of increasing the
overall spread, likely because the method avoids fitting a
forced thermodynamical or dynamical signal in the ensemble
towards a forced or internal variability of a different origin in
the reference index. Examining the verification of the HGR-
calibrated dynamical and residual components separately re-
veals that the spread / error ratio of the dynamical compo-
nents of the ensemble is particularly well calibrated (not
shown). In comparison with the HGR-decomp method, the
HGR method generally has a lower spread, which in many
cases results in projections that have a spread / error ratio

lower than 1 and are less reliable than for the HGR-decomp
method. In this sense, the HGR method appears to be slightly
overfitting the ensemble to the reference period, resulting in
a consistently overconfident ensemble projection.

3.4 Examining the impact of calibration on projections of
future climatologies

To assess how the calibration influences the projections of
average European climate during the mid-21st-century pe-
riod, we will examine projections of the mean 2041–2060
climate. Until this point we have focused on verifying the
yearly projections of each season over the out-of-sample pe-
riod, 2017–2060, which gives a verification measure for each
CMIP5 model (e.g. as shown in Figs. 4 and 5). We also
need to verify the out-of-sample projections for the 2041–
2060 means. However, since there is only a single verifica-
tion point for the climatology in each of the CMIP5 models,
we instead need to combine the single measurements to pro-
duce one verification score across all the models. To estimate
the uncertainty of these verification measures, we perform a
bootstrap resampling over the 39 CMIP5 model projection–
verification pairs. Verification results for the 2041–2060 cli-
matologies for both the CESM1-LE and MPI-GE are shown
in Fig. 6.

The HGR-decomp calibration tends to improve the pro-
jected 2041–2060 climatology of temperature in both sea-
sons and ensembles, but especially summer. This is a partic-
ular improvement during the summer, in both the accuracy
(i.e. RMSE) and reliability (i.e. spread / error ratio) of the
out-of-sample verification. The calibrated summer tempera-
ture projections are more reliable in all three European re-
gions in the CESM1-LE and MPI-GE ensembles but all tend
to somewhat overconfident. The winter temperature shows
less obvious improvement in terms of RMSE of the cal-
ibrated projections, but the reliability is significantly im-
proved for all the regions in both ensembles, but, again, the
calibrated CESM1-LE data are slightly more reliable. There
is less improvement for precipitation projections than seen
for the temperature projections. For the summer precipita-
tion, there are modest but significant improvements in some
regions in terms of the RMSE, but the reliability is more
mixed, with the calibration actually worsening the reliability
in the MED region for the CESM1-LE dataset. The calibra-
tion has the least influence on the 2041–2060 climatology of
precipitation, acting to worsen the RMSE in some instances
but also to modestly improve the reliability.

Overall, the verification of the projected 2041–2060 clima-
tologies in the imperfect model tests indicates that the HGR-
decomp calibration acts to generally improve the accuracy
and reliability of the projections. The calibrated temperature
projections perform better than the calibrated precipitation
projections. It is notable, however, that the out-of-sample ver-
ification for the 2041–2060 climatologies does not generally
seem to perform as well as the calibration for the yearly pro-

Earth Syst. Dynam., 11, 1033–1049, 2020 https://doi.org/10.5194/esd-11-1033-2020



C. H. O’Reilly et al.: Calibrating and verifying single-model large-ensemble European climate projections 1043

Figure 6. Verification of the 2041–2060 mean projections calculated relative to the out-of-sample CMIP5 models for both the CESM1-LE
and MPI-GE datasets. The horizontal lines show the mean across all models and the vertical lines show the 90 % confidence intervals, cal-
culated by randomly resampling across the CMIP5 models with replacement 1000 times. The black crosses indicate where the calibrated
ensemble is significantly better than the equivalent uncalibrated ensemble; the black circles indicate where the calibrated ensemble is signif-
icantly worse that the uncalibrated ensemble.

jections examined in the previous sections. There are several
possible factors contributing to this. The first is that, when we
examine the performance of the calibration on the yearly pro-
jections, the beginning of the 2017–2060 verification is found
to be more accurate and reliable than the latter period, as the
forced signal in the ensemble diverges from the observations
to which it is calibrated. This is demonstrated clearly when
the verification is applied to different future periods (specif-
ically 2021–2040, 2041–2060 and 2061–2080; see Fig. S6).
We find that the accuracy and reliability clearly deteriorate as
the target period moves further into the future, indicating that
the HGR-decomp calibration method is less appropriate for
periods further into the future. Another reason is that much of
the increased reliability in the yearly projections stems from
calibrating the (unpredictable) internal variability in the en-
semble to the target index, but in the 20-year climatology
there is a much smaller contribution of this internal variabil-
ity.

3.5 Calibrating large ensembles to observations and
assessing the impact on future climate projections

The imperfect model tests in the previous sections demon-
strate that the calibration methods generally act to improve
future projections in a out-of-sample verification. In partic-
ular, the HGR-decomp method is a categorical improvement
over the uncalibrated ensembles in the imperfect model anal-
ysis using the CMIP5 ensemble, as described in the previous
sections. On the basis of this analysis, we will now apply the
HGR-decomp calibration method to the large ensembles, us-

ing the observational indices of temperature and precipitation
to calibrate against.

The calibrated CESM1-LE projections for the summer
temperature and precipitation are shown in Fig. 7. Based on
the imperfect model tests we expect the calibrated summer
CESM1-LE to represent the most accurate and reliable pro-
jection out of all of the ensemble–variable–season combina-
tions tested. For the summer temperature projections, cali-
brating the CESM1-LE against the observations over the ref-
erence period, the rate of warming until 2060 is reduced by
varying amounts. There are also small changes in spread, per-
haps most notable for the NEUR region, with the calibration
method acting to increase the uncertainty in the future pro-
jections. For the precipitation, the signal in CESM1-LE pro-
jection is much weaker with respect to the inter-annual vari-
ability. In the projections shown here the calibration has a
notable impact on the future projections, acting to weaken
the drying projected in the CEUR region and adjusting the
ensemble uncertainty in all the regions.

The calibrated summer projections from the MPI-GE are
fairly similar to the CESM1-LE, with the ensemble medi-
ans of the MPI-GE also plotted in Fig. 7 for comparison
(the full ensemble projection plots are shown in Fig. S7).
The warming in the NEUR region is reduced over the 2017–
2060 period and the uncertainty is increased markedly. The
calibration technique makes smaller adjustments to the sum-
mer temperature projections in the CEUR and MED regions,
which may be because the uncalibrated ensemble already
does a reasonable job of time-capturing the warming vari-
ability seen during the observational period. In the projec-
tions of summer precipitation in the MPI-GE dataset, there
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Figure 7. Uncalibrated and calibrated (HGR-decomp) CESM1-LE projections, where here the calibrated projections have been calibrated
against the observations over the period 1920–2016. The lines show the ensemble medians for the uncalibrated and calibrated ensembles for
both the CESM1-LE (solid) and MPI-GE (dashed) datasets. The shading shows the 5–95 % range of the CESM1-LE ensemble. Based on
the verification out-of-sample tests using the CMIP5 models the calibrated ensemble is expected to be more reliable than the uncalibrated
ensemble, particularly for temperatures.

is a fairly strong future drying signal in both the CEUR and
MED regions that is greatly reduced by the calibration. Inter-
estingly a similar result is seen in the time-slice experiments
of Matsueda et al. (2016) when calibrated using the results
of seasonal hindcast experiments, which tends to reduce the
drying in the MED region. In the calibration shown here, this
seems to be because the MPI-GE has a drying trend over
the whole observational period in these regions, which is dy-
namical in origin and is not seen clearly in the observations.
Based on the imperfect model tests, however, we have less
confidence in the performance of the calibrated ensembles
for precipitation.

We also tested the observational calibration using data de-
composed using the 20CR SLP, rather than the HadSLP2
SLP data (Fig. S9). The results are generally insensitive to
the choice of SLP dataset. One exception is the MED sum-
mer temperatures, for which the calibration amplifies fu-
ture warming. In this instance the dynamical component of
the decomposition when using 20CR SLP accounts for sub-
stantially less of the observed variance than in HadSLP2
(Table S1 in the Supplement), and the decompositions are
also substantially different (Table S2). This indicates that

for this season and region the 20CR data are not capturing
what seems to be a clearer dynamical signal in the HadSLP2
dataset and, as a result, are perhaps less dependable. On the
whole though, the results are largely insensitive to the choice
of SLP dataset.

To consider whether the imperfect model testing is really
a useful indication of the performance of the observational
calibration, it is of interest to compare the fit parameters of
the HGR-decomp calibration. The parameters b and c from
Eq. (7) are plotted in Fig. S10. The observed scaling param-
eters, b and c, generally lie within the range of values used
to calibrate CMIP5 models in the previous sections. In some
cases the parameters lie outside the CMIP5 model ensemble,
but this is not systematic, so there is no clear reason to ex-
pect the efficacy of the calibration to be very different when
applied to the observational data.

The projected changes in the 2041–2060 climatologies –
compared with the present-day reference period, 1995–2014
– are shown in Fig. 8. Here, we have plotted both the uncali-
brated and (HGR-decomp) calibrated climatological changes
for both the CESM1-LE and MPI-GE datasets. An interest-
ing feature of these projected changes is that for many of
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Figure 8. The 2041–2060 mean calculated relative to the 1995–2014 climatology for both CESM1-LE and MPI-GE, calibrated using the
HGR-decomp method to the observations over the period 1920–2016. The vertical lines show the 90 % range of the ensemble, thick boxes
show the interquartile range and horizontal lines show the ensemble median.

them the calibrated ensembles are more consistent with one
another than their uncalibrated counterparts. This is perhaps
most clear for the summer temperature changes in all the
European regions, particularly NEUR and CEUR, in which
there is a difference of over 1 K in the mean changes of the
uncalibrated projections and with no overlap in the proba-
bility distributions. After the calibration is applied, the pro-
jected mean changes are closer to one another, with consid-
erable overlap in their probability distributions. The calibra-
tion acts to make the projections more consistent for most of
the variables and regions, which is reassuring as this implies
that the observations are having a strong impact on the ini-
tial uncalibrated ensembles, which are themselves often very
different.

Another feature of the calibration’s influence on the fu-
ture climatologies is that it fairly consistently acts to increase
the uncertainty of the projections, with respect to the uncal-
ibrated ensembles. This is most clear for the projections of
future temperature over Europe, where the imperfect model
tests indicate that the calibration has a large impact on the
reliability of the projections (e.g. Fig. 6), suggesting that the
broader calibrated distribution is reasonable and is likely to
be a better future projection. It is interesting to note that the
calibrated CESM1-LE projection has a wider spread than
in the calibrated MPI-GE projection for many of the pro-
jected temperature indices, which may be related to particu-
lar trend biases in the CESM1-LE (e.g. McKinnon and Deser,
2018). In the imperfect model tests, shown in Fig. 6, the cal-
ibrated temperature projections for the CESM1-LE dataset
are consistently more reliable (in terms of spread / error ra-
tio) than for the MPI-GE dataset. The calibrated MPI-GE
projections were more underconfident in the out-of-sample
verification, indicating that we should have more confidence
in the broader calibrated CESM1-LE projections for future
temperature changes.

In a recent paper, Brunner et al. (2020) compared sev-
eral different methods of model weighting and constraining
climate projections for the European summer season using
multi-model ensembles over the same 2041–2060 period un-
der the RCP8.5 scenario. The HGR-decomp method gener-

ally predicts lower levels of warming for European summer
than the CMIP5-based model weighting/constraining meth-
ods, but much of the distributions of the projected changes
overlaps. It is notable that the HGR-decomp method can
project changes that are outside of the uncalibrated distri-
bution, which is clearly not the case for the model weight-
ing/constraining methods (see, for example, Fig. 2 of Brun-
ner et al., 2020). This feature in particular sets the HGR-
decomp method apart from these other techniques; whether
this is for better or worse, though, is not clear.

4 Conclusions

In this study we have examined methods of calibrating re-
gional climate projections from large single-model ensem-
bles. The three calibration methods tested here – VINF,
EMOS and HGR – are more commonly used for initialised
forecasts from weeks up to seasonal timescales. Here we ap-
plied these calibration techniques to ensemble climate pro-
jections, fitting seasonal ensemble data to observations over
a reference period (1920–2016). The calibration methods act
to scale the ensemble signal and spread so as to optimize
the fit over the reference period. The three calibration meth-
ods display similar performance, all generally improving the
out-of-sample projections in comparison to the uncalibrated
ensemble. The simplest of the calibration methods, HGR, in-
cludes no variability of the ensemble spread and effectively
discards any information that may be contained in the year-
to-year variability of the spread in the raw ensemble. Based
on the performance of the HGR method, we can conclude
that the information in the year-to-year changes in the en-
semble spread is not important enough, at least in the large
ensembles examined in this study, to have a meaningful in-
fluence on the ensemble calibration.

We also tested calibrating the variables after they had been
subjected to a dynamical decomposition. In this method, all
variables were separated into dynamical and residual com-
ponents using information of the large-scale circulation, cal-
ibrated separately using the corresponding reference indices
and then recombined to produce the final calibrated ensem-
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ble. The results from the out-of-sample verification of the
HGR-decomp calibrations demonstrate a small but notice-
able improvement over the HGR method, particularly in
terms of the reliability. The HGR-calibrated ensembles have
a tendency to be overconfident for their future projections,
and this seems to be due to an apparent overfitting to vari-
ability in the reference period, which is found to be allevi-
ated to some extent by calibrating the dynamical and residual
components of the ensemble separately. Therefore, the HGR-
decomp calibration was chosen as the best method to apply
to the observational reference data.

The HGR-decomp calibration method was also found to
improve the projections of 20-year climatologies during the
mid-21st century (i.e. 2041–2060). The accuracy and reli-
ability of the projections improve in the calibrated ensem-
ble when subject to the imperfect model tests. The perfor-
mance of the calibration was substantial for the temperature
projections, but for precipitation the improvement is much
more modest, or even absent in some instances. Whilst both
datasets demonstrate an improvement due to calibrations, it
is interesting that the CESM1-LE dataset seems to perform
better than the MPI-GE, particularly in terms of the reliability
of the future projections. Perhaps it is not too surprising that
one ensemble would be found to be better than another when
subjected to this type of calibration. For example, if we had
a third ensemble that we knew was a much worse represen-
tation of the climate system, we might expect the calibration
to improve the projection in this ensemble, but we would not
expect this calibrated ensemble to outperform the other large
ensembles. In this sense, the calibration approach taken here
is clearly not a panacea for all ensemble projections, and ulti-
mately the accuracy and reliability of the calibrated ensemble
projection would be expected to depend on the raw ensemble
projection.

We then proceeded to apply the HGR-decomp method to
each of the large ensembles using the observations as a ref-
erence, over the period 1920–2016. Based on the imperfect
model testing we expect that the calibrated ensemble projec-
tion provides a more accurate and certainly a more reliable
probabilistic projection of European climate over the next
40–50 years. In both the CESM1-LE and MPI-GE datasets
the projected increase in European temperatures is gener-
ally smaller in the calibrated ensembles compared to the un-
calibrated ensembles. The calibrated projections are notably
more consistent with one another than the respective cali-
brated projections, indicating that the calibration with obser-
vations is having a consistent and substantial influence on
the future projections of European climate. For the example
of European temperatures, the best estimates for the summer
temperature change for the period 2041–2060 (from 1995–
2014) are projected to be about 2 ◦C for the CEUR and MED
regions and 1.3 ◦C for the NEUR region. Each of these is
associated with a substantial ensemble spread, however, re-
flecting the increased uncertainty (or larger ensemble spread)

added by the calibration to provide a more reliable projec-
tion.

The overall effectiveness of the calibration seems to stem
from some key characteristics of the ensemble and reference
datasets. The calibration performs well where there is a rea-
sonably strong signal in the ensemble that is also present
to some extent in the reference data, as is the case for the
temperature indices. In these instances, the signal is scaled
and an ensemble spread is added to represent the appropri-
ate estimate of internal variability, much of which is asso-
ciated with large-scale circulation variability. For precipita-
tion, where there is no clear signal over the reference period
in the observations for the specific regions and seasons anal-
ysed here (and in many of the CMIP5 models), any future
changes projected are difficult to scale over this reference pe-
riod. In effect, the calibration then adds value by correcting
(mostly by inflating) the ensemble spread. This calibration
method could therefore reasonably be applied to many other
regions and variables where there is an emerging forced sig-
nal in response to external forcing. The calibration can also
be applied to smaller spatial scales, but as the scales become
smaller, the forced signal generally becomes weaker relative
to the internal variability, so the calibration will tend to be-
come somewhat less effective. Nonetheless, the calibration
has also demonstrated some utility for temperature projec-
tions on 2.5◦ grid boxes (as included in Brunner et al., 2020).

One novel aspect of this study that is particularly worth
emphasising is the imperfect model testing approach. Pre-
vious studies have typically used multi-model ensembles to
constrain future projections and some in particular have used
a “leave-one-out” perfect model approach to examine the ef-
fectiveness of these methods (e.g. Knutti et al., 2017; Brun-
ner et al., 2019). However, this leave-one-out approach is of-
ten used to tune particular parameters in the methodology,
such as the performance weighting parameter in Brunner
et al. (2019). The use of the leave-one-out approach to tune
the method is certainly well justified. However, this does re-
duce the power of subsequently re-using this approach to ver-
ify the accuracy of the constraining method, which may re-
sult in overfitting or an overestimation of the added value of
the constraint. The imperfect model approach we have used
in this study is less susceptible to this type of overfitting as
the data used for the verification are kept separate from the
underlying large ensembles throughout, only being used to
compare the efficacy of the different methods. The imper-
fect model approach to testing is therefore an advantageous
approach, regardless of the particular calibration or model
weighting that is being subjected to the testing.

As well as being applied to other datasets and regions, this
calibration method can also be applied to initialised decadal
forecasts. Decadal predictions exhibit skill in some aspects
out to 10 years (e.g. Doblas-Reyes et al., 2013; Smith et al.,
2019), and a recent study has demonstrated that constraining
climate projections using initialised decadal predictions can
improve the accuracy of projections in some cases (Befort
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et al., 2020), which is an exciting proposition for improv-
ing climate prediction. Given that these calibration methods
have been shown to be effective when applied to initialised
decadal forecasts, if calibration also proves effective for pro-
jections beyond 10 years, this would present an opportunity
to merge the calibrated decadal predictions with calibrated
large- ensemble climate projections.

Previous studies have examined how similar calibration
methods to those examined in this paper can improve multi-
year forecasts (e.g. Sansom et al., 2016; Pasternack et al.,
2018). It would be of particular interest to examine how cal-
ibrated decadal predictions could be combined or merged
with these calibrated projections. The CESM1-LE dataset
analysed in this study has an initialised counterpart, namely
the Decadal Prediction Large Ensemble (Yeager et al., 2018),
and testing how to combine data from these different en-
sembles to produce a merged calibrated set of climate pre-
dictions would potentially be an exciting extension to the
present study.
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