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Abstract. In this study, a dimensionally consistent governing equation of transient unconfined groundwater flow
in fractional time and multi-fractional space is developed. First, a fractional continuity equation for transient un-
confined groundwater flow is developed in fractional time and space. For the equation of groundwater motion
within a multi-fractional multidimensional unconfined aquifer, a previously developed dimensionally consistent
equation for water flux in unsaturated/saturated porous media is combined with the Dupuit approximation to
obtain an equation for groundwater motion in multi-fractional space in unconfined aquifers. Combining the frac-
tional continuity and groundwater motion equations, the fractional governing equation of transient unconfined
aquifer flow is then obtained. Finally, two numerical applications to unconfined aquifer groundwater flow are
presented to show the skills of the proposed fractional governing equation. As shown in one of the numerical ap-
plications, the newly developed governing equation can produce heavy-tailed recession behavior in unconfined
aquifer discharges.

1 Introduction

Nearly 70 years ago in his hydrologic studies of the Aswan
High Dam, Hurst (1951) discovered that the flow time series
of the Nile River demonstrated fluctuations whose rescaled
range may not be proportional to the square root of the ob-
servation duration but may be proportional to the duration
raised to a power H (the so-called Hurst coefficient) that is
larger than 0.5 but less than 1. This finding, now called the
“Hurst phenomenon” implies that in such river flows the in-
tegral scale (the integral of the flow autocorrelation function
with respect to the time lag, over the range from zero to infin-
ity) may not exist, putting the process outside the Brownian
domain of finite-memory processes where the integral scale
is finite. Since the Hurst phenomenon amounts to the clus-

tering of wet years with wet years and dry years with dry
years, the so-called “Joseph effect” from the Bible (Mandel-
brot, 1977), it has important consequences on the planning
and operation of water storage systems over long periods
(Koutsoyiannis, 2005). The Hurst phenomenon in hydrologic
flow processes was later demonstrated convincingly by vari-
ous researchers, including Eltahir (1996), Radziejewski and
Kundzewicz (1997), Montanari et al. (1997), and Vogel et.
al. (1998) among others. In order to model the Hurst phe-
nomenon in river flows, the fractional Gaussian noise (FGN),
where the rescaled range for the time series of a flow process
in a time interval [0, t] is proportional to tH for 0.5<H < 1,
was introduced by Mandelbrot and Wallis (1969). The FGN
model was later extended by Koutsoyiannis (2002) in order
to satisfactorily model a range of timescales, including the
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conventional Brownian finite-memory flow processes. Aside
from the FGN models, physically based models of the Hurst
phenomenon were also developed by various authors, includ-
ing Klemes (1974), Beran (1994), and Koutsoyiannis (2003).
However, a physically based model that explains the Hurst
phenomenon explicitly in terms of the hydrologic process
mechanisms is still missing. Yevjevich (1963, 1971) pro-
vided a plausible physical explanation for the Markovian
structure of the annual river flows within a river basin by
linking the annual evolution of the water storage in the basin
to the exponential recession in baseflow of the basin runoff.
Meanwhile, baseflow in the basin runoff is mainly due to un-
confined aquifer flow to the neighboring stream network of
the basin. As shall be shown in a numerical example later
in this paper, the conventional unconfined groundwater flow
equation with integer powers does result in the hydraulic
head of and the discharge from the aquifer to decay exponen-
tially, which would result in the Markovian finite-memory
behavior of the river outflow from the basin. Such an ex-
ponentially decaying baseflow, while it can be explained by
the mechanics of the conventional unconfined groundwater
flow governing equation with integer powers, may not pro-
duce the heavy-tailed recession behavior necessary for the
long-range dependence in river flows, the basic characteris-
tic of the Hurst phenomenon, reported in annual river flow se-
ries in the abovementioned studies. The conventional integer-
power governing equations of the unconfined groundwater
flow, having finite memory, are fundamentally in the Brown-
ian domain and may not model the heavy-tailed baseflow re-
cession behavior that would be necessary to model the Hurst
phenomenon in annual river flows. What is needed is a new
structure for the governing equation of unconfined ground-
water flow that can reproduce heavy-tailed behavior with
time in the hydraulic head and aquifer discharge recession;
this would then lead to heavy-tailed recession behavior in the
baseflow of the river basin. Furthermore, various researchers
also reported long-range dependence in groundwater level
fluctuations (e.g., Li and Zhang, 2007; Yu et al., 2016; Tu
et al., 2017; and the references therein). One possible way to
reproduce heavy-tailed recession behavior in the hydraulic
head and discharge of an unconfined aquifer is by means of
a new governing equation of unconfined groundwater flow
with fractional powers. Such behavior in an anisotropic con-
fined groundwater aquifer with time and space fractional op-
erators in its governing equation was recently demonstrated
(Kavvas et al., 2017a; Tu et al., 2017). Accordingly, the
study reported herein will follow a similar approach to de-
velop a new governing equation for unconfined groundwater
aquifers.

Reporting that conventional geometries cannot character-
ize groundwater flow in many fractured rock aquifers (Black
et al., 1986) and the observed drawdown tends to be under-
estimated in early times and overestimated at later times by
the conventional radial groundwater flow model (Van Ton-
der et al., 2001), Cloot and Botha (2006) developed a frac-

tional governing equation for radial groundwater flow in in-
teger time and fractional space in a uniform homogeneous
aquifer. They used the Riemann–Liouville (RL) fractional
derivative form (please see Podlubny, 1998, pp. 62–77, for a
comprehensive explanation of the RL fractional derivative) in
their model formulation. Atangana and Bildik (2013), Atan-
gana (2014), and Atangana and Vermeulen (2014) then re-
formulated the fractional radial groundwater flow model of
Cloot and Botha (2006) by using the Caputo differentiation
framework (to be detailed in the next section) and reported
better performance. Compared to the Riemann–Liouville
derivative approach, the Caputo framework has a fundamen-
tal advantage of being able to accommodate physically inter-
pretable real-life initial and boundary conditions (Podlubny,
1998). In simple terms, a differential equation that is based
on the RL fractional derivative requires the limit values of
the RL fractional derivative for its initial and boundary val-
ues, which have no known physical interpretation (Podlubny,
1998, p. 78). Meanwhile, “Caputo derivatives take on the
same form as for integer-order differential equations, i.e.,
contain the limit values of integer-order derivatives” (Pod-
lubny, 1998, p. 79), incorporating the real-world initial and
boundary conditions into the solution to a fractional govern-
ing equation. Atangana and Baleanu (2014) presented a new
radial groundwater flow model in fractional time based on
a new fractional derivative definition, “conformable deriva-
tive” (Khalil et al., 2014). Most recently, Su (2017) proposed
a time–space fractional Boussinesq equation, and he claimed
this fractional equation is a general groundwater flow equa-
tion and can be applied to groundwater flow in both confined
and unconfined aquifers. However, all of the aforementioned
studies only presented the formulated fractional governing
groundwater flow equations, and no detailed derivations of
these governing equations from the fundamental conserva-
tion principles were provided.

Wheatcraft and Meerschaert (2008) derived the groundwa-
ter flow continuity equation in the fractional form by using
the fractional Taylor series approximation. They further re-
moved the linearity, or piecewise linearity, restriction for the
flux and the infinitesimal control volume restriction. When
developing the fractional continuity equation, the groundwa-
ter flow process was considered in fractional space but in
integer time by Wheatcraft and Meerschaert (2008). They
further assumed the same fractional power in every direc-
tion of the fractional porous media space. Furthermore, only
the mass conservation was considered in their derivation,
not the fractional water flux equation. Mehdinejadiani et
al. (2013) expanded the approach of Wheatcraft and Meer-
schaert (2008) to the derivation of a governing equation of
groundwater flow in an unconfined aquifer in fractional space
but in integer time. In their derivation, they used the con-
ventional Darcy formulation for the water flux with an inte-
ger spatial derivative, while utilizing fractional spatial deriva-
tives in their continuity equation.
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Olsen et al. (2016) pointed out that the derivations in
Wheatcraft and Meerschaert (2008) and Mehdinejadiani et
al. (2013) utilized the fractional Taylor series, as formu-
lated by Odibat and Shawagfeh (2007), which utilized lo-
cal Caputo derivatives. In order to expand the local Ca-
puto derivatives in the abovementioned studies, Olsen et
al. (2016) utilized the fractional mean value theorem from
Diethelm (2012) to develop a continuity equation of ground-
water flow with left and right fractional nonlocal Caputo
derivatives in fractional space but in integer time. Olsen et
al. (2016) did not address the water flux formulation in frac-
tional space and, hence, did not develop a complete gov-
erning equation of groundwater flow. They also did not ad-
dress the multi-fractional spatial derivatives in order to ad-
dress anisotropy within an aquifer. Around that time, Kav-
vas et al. (2017a) utilized the mean value formulation from
Usero (2008), Odibat and Shawagfeh (2007), and Li et
al. (2009) to derive a complete governing equation of tran-
sient groundwater flow in an anisotropic confined aquifer
with fractional time and multi-fractional space derivatives
which addressed not only the continuity but also the wa-
ter flux (motion) in fractional time–space and the effect of
a sink/source term. By employing the abovementioned frac-
tional mean value formulations, Kavvas et al. (2017a) devel-
oped the governing equation of confined groundwater flow in
fractional time–space in nonlocal form.

As mentioned above, unconfined groundwater flow is the
fundamental component of the watershed runoff baseflow
since it is the fundamental contributor to the network stream-
flow within a watershed during dry periods. As such, the be-
havior of unconfined groundwater flow is key to the physi-
cally based understanding of the long memory in watershed
runoff. Meanwhile, as will be seen in the following deriva-
tion of its governing equation, unconfined aquifer ground-
water flow is uniquely different from the confined aquifer
groundwater flow. The fundamental difference between the
two aquifer flows is that while the flow in a confined aquifer
is linear and compressible, the flow in an unconfined aquifer
is nonlinear and incompressible due to the unconfined aquifer
being phreatic, its top surface boundary being open to the at-
mosphere. Accordingly, hydrologists have developed unique
governing equations of unconfined aquifer groundwater flow
(Bear, 1979; Freeze and Cherry, 1979). Starting with the
next section, first the continuity equation of transient uncon-
fined groundwater flow within an anisotropic heterogeneous
aquifer under a time–space varying sink/source will be devel-
oped in fractional time and fractional space. Then, this frac-
tional continuity equation will be combined with a fractional
groundwater motion equation to obtain a transient groundwa-
ter flow equation in fractional time and multi-fractional space
within an anisotropic heterogeneous unconfined aquifer.

Analogous to the traditional governing groundwater flow
equations, as outlined by Freeze and Cherry (1979) and
Bear (1979), the fractional unconfined groundwater flow
equations must have specific features (Kavvas et al., 2017a):

i. In order for the governing equation to be prognostic, the
form of the equation must be known completely from
the outset.

ii. The fractional governing equations must be dimension-
ally consistent and be purely differential equations, con-
taining only differential operators without difference
operators.

iii. As the fractional derivative powers go to integer val-
ues, the fractional unconfined groundwater flow equa-
tions must converge to the corresponding conventional
integer-order governing equations.

Within this framework, the governing equations of uncon-
fined groundwater flow in fractional time and fractional
space will be developed in the following.

2 Derivation of the continuity equation for transient
unconfined groundwater flow in a heterogeneous
anisotropic multi-fractional medium in fractional
time

The β-order Caputo fractional derivativeDkβa f (x) of a func-
tion f (x) may be defined as (Odibat and Shawagfeh, 2007;
Podlubny, 1998; Usero, 2008, and Li et al., 2009)

Dβa f (x)=
1

0(1−β)

x∫
a

f ′(ξ )
(x− ξ )β

dξ,

0< β < 1, x ≥ a, (1)

where ξ represents a dummy variable in the equation.
It was shown in Kavvas et al. (2017b) that one can ob-

tain a βxi -order approximation (i = 1, 2) to a function f (xi)
around xi −1xi by the following:

f (xi)= f (xi −1xi)+
(1xi)βxi

0
(
βxi + 1

)Dβxixi−1xif (xi) ;

i = 1,2. (2)

In Eq. (2), an analytical relationship between 1xi and
(1xi)βxi (i = 1, 2) that will be universally applicable
throughout the modeling domain is possible when the lower
limit of the above Caputo derivative in Eq. (2) is taken as zero
(that is, 1xi = xi) for f (xi)= xi (Kavvas et al., 2017b).

Under the Dupuit approximation of horizontal flow
streamlines (for a very small water table gradient) (Bear,
1979), the net mass flux through the control volume of an
unconfined aquifer with a flat bottom confining layer, as de-
picted in Fig. 1, which also has a sink/source mass flux,
ρqv1x11x2, can be formulated as[
ρQx1 (x1,x2; t)− ρQx1 (x1−1x1,x2; t)

]
1x2

+
[
ρQx2 (x1,x2; t)− ρQx2 (x1,x2−1x2; t)

]
1x1

− ρqv1x11x2, (3)
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Figure 1. The mass flux through the control volume of an uncon-
fined aquifer.

where Qxi is the discharge across a vertical plane of unit
width in the ith direction (i = 1, 2), ρ is the fluid density, and
qv is the source/sink (recharge/leakage) per unit horizontal
area. Then, combining Eq. (2) with Eq. (3), with 1xi = xi
(i = 1, 2), and expressing the resulting Caputo derivative,

D
βxi
0 f (xi), as ∂

βxi f (xi )
(∂xi )

βxi
(i = 1, 2) for convenience, yields the

net mass flux through the control volume in Fig. 1, to the
orders of (1x1)βx1 and (1x2)βx2 , expressed as

1
0
(
βx1 + 1

)( ∂

∂x1

)βx1 (
ρQx1 (x1,x2; t)

)
(1x1)βx11x2

+
1

0
(
βx2 + 1

)( ∂

∂x2

)βx2 (
ρQx2 (x1,x2; t)

)
1x1(1x2)βx2

−ρqv1x11x2, (4)

where different powers for fractional space derivatives are
utilized in different directions due to the anisotropy in the
flow medium.

Kavvas et al. (2017b) have shown that, to βxi -order frac-
tional increments in space in the ith direction (i = 1, 2),

(1xi)βxi =
0
(
βxi + 1

)
0(2−βxi )

x
1−βxi
i

1xi, i = 1,2. (5)

Combining Eqs. (5) and (4) yields, for the net mass out-
flow through the control volume in Fig. 1 (to the orders of
(1xi)βxi , i = 1, 2),

0
(
2−βx1

)
x

1−βx1
1

(
∂

∂x1

)βx1 (
ρQx1 (x; t)

)
1x11x2

+
0(2−βx2 )

x
1−βx2
2

(
∂

∂x2

)βx2 (
ρQx2 (x; t)

)
1x11x2

− ρqv1x11x2, x = (x1,x2) . (6)

Denoting the water volume within the control volume in
Fig. 1 by Vw, the specific yield (effective porosity) Sy of a

phreatic aquifer (Bear and Verruijt, 1987) is expressed as

Sy =
1Vw

1h

1
1x11x2

, (7)

where1Vw is the change in water volume in the control vol-
ume per change 1h in the hydraulic head (the elevation of
the phreatic surface (water table) above the flat bottom of the
aquifer). The time rate of change in mass within the control
volume in Fig. 1 may be written as (Bear and Verruijt, 1987)

Sy (ρh (x; t)− ρh (x; t −1t))
1t

1x11x2, (8)

which can then be expressed in terms of the approximation
(Eq. 2) with respect to the time dimension as

Sy

1t

[
1tα

0(α+ 1)

(
∂

∂t

)α
(ρh)

]
1x11x2. (9)

To α-order fractional increments in time (Kavvas et al.,
2017b)

(1t)α =
0 (α+ 1)0(2−α)

t1−α
1t. (10)

Substituting Eq. (10) into Eq. (9), one can obtain the time
rate of change of mass in the control volume, as shown in
Fig. 1,

Sy
0(2−α)
t1−α

(
∂

∂t

)α
(ρh)1x11x2. (11)

As the time rate of change of mass within the control vol-
ume, as shown in Fig. 1, must be inversely proportional to the
net mass flux passing through the control volume, one may
combine Eqs. (6) and (11) to obtain[
0
(
2−βx1

)
x

1−βx1
1

(
∂

∂x1

)βx1 (
ρQx1 (x; t)

)
+
0
(
2−βx2

)
x

1−βx2
2

(
∂

∂x2

)βx2 (
ρQx2 (x; t)

)
− ρqv

]
1x11x2 =

− Sy
0(2−α)
t1−α

(
∂

∂t

)α
(ρh)1x11x2; (12)

0
(
2−βx1

)
x

1−βx1
1

(
∂

∂x1

)βx1 (
ρQx1 (x; t)

)
+
0
(
2−βx2

)
x

1−βx2
2

(
∂

∂x2

)βx2 (
ρQx2 (x; t)

)
− ρqv =

− Sy
0(2−α)
t1−α

(
∂

∂t

)α
(ρh) (13)

for 0< α,βx1 ,βx2 < 1, x = (x1,x2, ).
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Within the framework of fluid incompressibility in the un-
confined aquifer, Eq. (13) reduces further to

0
(
2−βx1

)
0(2−α)

t1−α

x
1−βx1
1

(
∂

∂x1

)βx1 (
Qx1 (x; t)

)
+
0
(
2−βx2

)
0(2−α)

t1−α

x
1−βx2
2

(
∂

∂x2

)βx2 (
Qx2 (x; t)

)
−

t1−α

0(2−α)
qv =−Sy

∂αh

(∂t)α
, (14)

for 0< α,βx1 ,βx2 < 1, x = (x1,x2, ), as the time–space frac-
tional continuity equation of transient groundwater flow in an
anisotropic unconfined aquifer with multi-fractional dimen-
sions and in fractional time.

Performing a dimensional analysis of Eq. (14) yields

L

T α
=

T 1−α

L1−βx1

1

Lβx1

L2

T
=

T 1−α

L1−βx2

1

Lβx2

L2

T

=
T 1−α

1
L

T
=
L

T α
, (15)

whereL denotes length and T denotes time. Also, α, βx1 , and
βx2 are respectively the fractional powers in time and in x1
and x2 spatial dimensions. In Eq. (15), starting from the left-
hand side (LHS), the first term shows the final dimensions
of Eq. (14), the second term shows in detail the dimensions
of the individual components of the first term on the LHS
of Eq. (14), the third term shows in detail the dimensions of
the individual components of the second term on the LHS of
Eq. (14), the fourth term shows in detail the dimensions of
the individual components of the third term on the LHS of
Eq. (14), and the fifth term shows in detail the dimensions
of the individual components on the right-hand side (RHS)
of Eq. (14). Hence, the left-hand and right-hand sides of the
continuity Eq. (14) for transient groundwater flow in an un-
confined aquifer in multi-fractional space and fractional time
are consistent, as shown in Eq. (15).

For n− 1< α,βxi < n, where n is any positive integer, as
α and βxi → n, the Caputo fractional derivative of a func-
tion f (y) to order α or βxi (i = 1, 2) yields the standard nth
derivative of the function f (y) (Podlubny, 1998). Then, when
α and βxi → 1 (i = 1, 2), the continuity Eq. (14) becomes the
conventional continuity equation for transient groundwater
flow in an unconfined aquifer:

−Sy
∂h

∂t
=

∂

∂x1

(
Qx1 (x; t)

)
+

∂

∂x2

(
Qx2 (x; t)

)
− qv. (16)

3 Motion equation (specific discharge equation) in
fractional multidimensional unconfined aquifers

Recently, Kavvas et al. (2017a, b) derived a governing equa-
tion for water flux (specific discharge), qxi (i = 1, 2, 3), in

a saturated or unsaturated porous medium with fractional di-
mensions in the form

qi (x, t)=−Ks,xi (x)
0
(
2−βxi

)
x

1−βxi
i

∂βxi h

(∂xi)βxi
,

i = 1,2,3; x = (x1,x2,x3) , (17)

where Ks,xi (x) is the saturated hydraulic conductivity in
the ith spatial direction (i = 1, 2, 3). Meanwhile, under the
Dupuit approximation of essentially horizontal unconfined
aquifer flow (for a very small water table slope) (Bear, 1979),
referring to Fig. 1, the discharge per unit width in the ith di-
rection (i = 1, 2) can be expressed as

Qxi (x, t)= hqi (x, t) , i = 1,2; x = (x1,x2, ) . (18)

Then combining Eqs. (18) and (17) results in

Qxi (x, t)=−Ks,xi (x)
0
(
2−βxi

)
x

1−βxi
i

h
∂βxi h

(∂xi)βxi
,

i = 1,2; x = (x1,x2) , (19)

as the governing equation of groundwater motion within an
unconfined aquifer with a flat bottom confining layer. In
Eq. (19) h is the unconfined aquifer thickness or the phreatic
surface elevation above the bottom confining layer.

A dimensional analysis of Eq. (19) yields L2/T for the
units of both the LHS and the RHS of the equation, estab-
lishing its dimensional consistency.

Applying the abovementioned result of Podlubny (1998)
to the convergence of a fractional derivative to a correspond-
ing integer derivative for βxi → 1 (i = 1, 2) reduces the frac-
tional motion Eq. (19) for unconfined groundwater flow to
the conventional equation (Bear, 1979):

Qxi (x, t)=−Ks,xi (x)h
∂h (x, t)
∂xi

, i = 1,2, (20)

for the case of integer spatial dimensions. As such, the frac-
tional motion Eq. (19) for unconfined groundwater flow in
fractional spatial dimensions is consistent with the conven-
tional motion equation for the integer spatial dimensions.

4 The complete equation for transient unconfined
groundwater flow in multi-fractional space and
fractional time

Combining the fractional motion Eq. (19) of groundwater
flow in an unconfined aquifer with the fractional continuity
Eq. (14) of unconfined groundwater flow results in the equa-
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Figure 2. The sketch of numerical application 1; water seepage
through the body of a dam as an unconfined groundwater flow.

tion

Sy
∂αh

(∂t)α
=
0
(
2−βx1

)
x

1−βx1
1

(
∂

∂x1

)βx1

Ks,x1 (x)
t1−α

x
1−βx1
1

0
(
2−βx1

)
0(2−α)

h
∂βx1h

(∂x1)βx1


+
0
(
2−βx2

)
x

1−βx2
2

(
∂

∂x2

)βx2

Ks,x2 (x)
t1−α

x
1−βx2
2

0
(
2−βx2

)
0(2−α)

h
∂βx2h

(∂x2)βx2


+

t1−α

0(2−α)
qv, (21)

for 0< α,βx1 ,βx2 < 1, x = (x1,x2, ), as the time–space frac-
tional governing equation of transient unconfined groundwa-
ter flow in an anisotropic medium.

Performing a dimensional analysis of Eq. (21) yields

L

T α
=

1

L1−βx1

1

Lβx1

L

T

T 1−α

L1−βx1
L
L

Lβx1

=
1

L1−βx2

1

Lβx2

L

T

T 1−α

L1−βx2

L2

Lβx2
=
T 1−α

1
L

T
=
L

T α
, (22)

where L denotes length and T denotes time. Hence, the left-
hand and right-hand sides of the governing Eq. (21) for tran-
sient groundwater flow in an unconfined aquifer in multi-
fractional space and fractional time are consistent.

Specializing the above-discussed result of Pod-
lubny (1998) to n= 1, for α and βxi → 1 (i = 1, 2),
reduces the governing fractional Eq. (21) to the conventional
governing equation for transient groundwater flow in an
unconfined aquifer (Bear, 1979):

Sy
∂h

∂t
=

∂

∂x1

(
Ks,x1 (x)h

∂h(x, t)
∂x1

)
+

∂

∂x2

(
Ks,x2 (x)h

∂h(x, t)
∂x2

)
+ qv. (23)

5 Numerical application

To demonstrate the skills of the proposed fractional govern-
ing equation of unconfined aquifer groundwater flow, two nu-
merical applications are performed using the proposed frac-
tional governing equation. The first application (numerical
application 1) follows the physical setting of an example
from Wang and Anderson (1995), as depicted in Fig. 2. The
numerical problem of seepage through a dam under a sud-
den change in the water surface elevation at the downstream
section of the dam is modified based on seepage through a
dam, p. 53 and Problem 4.4(a), p. 89 in Wang and Ander-
son (1995), as shown in Fig. 2. The water seepage through
the body of the dam may be interpreted as one-dimensional
groundwater flow through an unconfined aquifer. The uncon-
fined flow system locates the top boundary of the saturated
zone in an earthen dam and the bottom of the dam rests on
impermeable rock. For this example, the unconfined aquifer
length L is 100 m. The initial water level in the upstream and
downstream sections of the dam and through the body of the
dam is 16 m. Then immediately after the initial time, the wa-
ter level at the downstream section of the dam is suddenly
dropped to 11 m and remains at 11 m afterwards. The un-
confined aquifer parameters are S = 0.2 for the specific yield
and K = 0.002 m min−1 for the hydraulic conductivity. The
analytical solution to this problem at the steady state is

h=

√
h2

2−h
2
1

L
x+h2

1, (24)

where h is the depth of the unconfined groundwater surface
from the bottom layer, L is the aquifer length, x is the dis-
tance from the upstream location of the dam body, and h1and
h2 are as shown in Fig. 2.

In Fig. 3a and b, the normalized groundwater head and
normalized groundwater discharge per unit width at location
x = L/2 through time under different fractional power val-
ues are shown. Meanwhile, Fig. 3c shows the normalized
groundwater head at the instance in time t = 40000 min as
a function of location throughout the body of the dam and
the analytical solution to the standard governing equation of
unconfined groundwater flow when βx = α = 1 at the steady
state. The considered fractional derivative powers in space
and time are βx = α = 0.7, 0.8, 0.9, 1.0. As can be seen from
Fig. 3a, the hydraulic head recession in time slows down
with the decrease of βx = α from 1. The hydraulic heads in
Fig. 3a have heavier tails as orders of time and space frac-
tional derivative powers decrease from 1 towards 0.7. Fur-
thermore, normalized groundwater discharge per unit width
in Fig. 3b goes to 1 at a slower rate as fractional deriva-
tive powers decrease from 1 towards 0.7. Meanwhile, Fig. 3c
shows that the numerical solution to the governing fractional
equation at βx = α = 1.0 and at a very long time after the
initial condition perfectly matches the steady-state analytical
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Figure 3. Results for numerical application 1: (a) the normalized groundwater head at x = L/2 through time under different fractional
derivative powers; (b) the normalized groundwater discharge per unit width at x = L/2 through time under different fractional derivative
powers; t is time and the simulation time T is 120 000 min; (c) the normalized groundwater head at t = 40000 min through length of the
aquifer (through the body of the dam) and the analytical solution to the conventional governing equation of unconfined groundwater flow
when βx = α = 1 at the steady state.

Figure 4. The sketch numerical application 2; the downstream
groundwater head is fixed at 11 m and the initial upstream ground-
water head is 16 m.

solution, Eq. (24), to the standard Eq. (23) with the specified
initial and boundary conditions.

The second application (numerical application 2) deals
with a transient unconfined groundwater flow from a hills-
lope toward a stream (Fig. 4). The upstream boundary plane
separates the region of flow from the adjacent hillslope that
feeds the adjacent tributary system; therefore ∂h

∂x
= 0 (Freeze,

1978) at x = 0. The normalized initial groundwater head in
the unconfined aquifer and the normalized groundwater head

at time t = 60000 min through the length of the aquifer under
different fractional derivative powers are shown in Fig. 5a.
The normalized groundwater head and normalized ground-
water discharge per unit width at x = L/2 through time un-
der different fractional derivative powers are demonstrated
in Fig. 5b and c. As can be seen from Fig. 5b and c, the
hydraulic head and groundwater discharge recession in time
slows down with the decrease of βx = α from 1. The hy-
draulic heads and groundwater discharges in Fig. 5b and c
have heavier tails as orders of time and space fractional
derivative powers decrease from 1 towards 0.7.

6 Discussion

From the standard governing Eq. (23) of unconfined ground-
water flow in integer time–space the saturated hydraulic con-
ductivity may be interpreted as a diffusion coefficient for
the nonlinear diffusion of groundwater in an unconfined
aquifer. The basic difference between confined and uncon-
fined groundwater flow is that the former can be interpreted
as a linear diffusion of groundwater while the latter is a non-
linear diffusion of groundwater within an aquifer. Similar to

www.earth-syst-dynam.net/11/1/2020/ Earth Syst. Dynam., 11, 1–12, 2020
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Figure 5. Results for numerical application 2: (a) the normalized initial groundwater head in the unconfined aquifer and the normalized
groundwater head at time t = 60000 min through length of the aquifer under different fractional derivative powers; (b) the normalized
groundwater head at x = L/2 through time under different fractional derivative powers; (c) the normalized groundwater discharge per unit
width at x = L/2 through time under different fractional derivative powers; t is time and the simulation time T is 60 000 min.

saturated hydraulic conductivities in Eq. (26) in Kavvas et
al. (2017a) for the fractional confined aquifer groundwater
flow, the saturated hydraulic conductivities in Eq. (21), which
governs fractional unconfined aquifer groundwater flow, are
modulated by the ratios of fractional time to fractional space,
t1−α

x
1−βxi
i

, i = 1, 2. In other words, the confined and unconfined

groundwater diffusions in fractional time–space are modu-
lated by the above fractional time–space ratios.

Numerical applications demonstrated that as the powers of
the space and time fractional derivatives decrease from 1, the
recession rate of the nondimensional groundwater hydraulic
head slows down compared to the case by the conventional
governing equation (i.e., with integer-order derivatives). This
behavior also indicates the modulation of the nonlinear dif-
fusion of the groundwater by the fractional powers of time
and space.

As mentioned in the Introduction section, unconfined
groundwater flow is the fundamental component of the wa-
tershed runoff baseflow since it is the fundamental contrib-
utor to the streamflow network within a watershed during
dry periods. As such, the behavior of unconfined groundwa-
ter flow is key to the physically based understanding of the

long memory in watershed runoff. As seen from the numeri-
cal applications in Figs. 3 and 5, the powers of the fractional
derivatives in time and space can modulate the speed of the
groundwater discharge evolution. Hence, they can modulate
the memory of the unconfined aquifer flow, which, in turn,
can modulate the memory of the watershed baseflow. Mean-
while, the Caputo derivative, as defined in its special form
D
βxi
0 f (xi) in space in this study, was shown by Kavvas and

Ercan (2016) and Ercan and Kavvas (2017) to be a nonlo-
cal quantity where the effect of the boundary conditions on
the groundwater flow within the flow domain can have long
spatial memories with the decrease in the powers of the spa-
tial fractional derivatives from unity. Similarly, it was shown
by Kavvas et al. (2017a) that the Caputo derivative in time,
Dα0 f (t), as defined in this study, is nonlocal in time and
can carry the effect of initial conditions on the groundwa-
ter flow for long time periods as the power in the time frac-
tional derivative decreases from 1. Therefore, the fractional
governing equation of unconfined groundwater flow in frac-
tional time and multi-fractional space has the potential to de-
scribe the long-memory characteristics of baseflow within a
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watershed. This important topic shall be explored in the near
future.

7 Conclusion

A dimensionally consistent fractional governing equation of
transient unconfined aquifer groundwater flow was derived
within a fractional differentiation framework. After develop-
ing a fractional continuity equation, a previously developed
dimensionally consistent equation for water flux in unsatu-
rated/saturated porous media was combined with the Dupuit
approximation to obtain an equation for groundwater motion
in multi-fractional space in unconfined aquifers. By com-
bining the fractional continuity and motion equations, the
governing equation of transient unconfined aquifer ground-
water flow in a multi-fractional medium in fractional time
was obtained. To demonstrate the skills of the proposed frac-
tional governing equation of unconfined aquifer groundwater
flow, two numerical applications were performed. As demon-
strated in the numerical application results, the orders of
the fractional space and time derivatives modulate the speed
of groundwater discharge and groundwater flow evolution,
slowing the process with the decrease in the powers of the
fractional derivatives from 1. It is also shown that the pro-
posed dimensionally consistent fractional governing equa-
tions approach the corresponding conventional equations as
the fractional orders of the derivatives go to 1.

Data availability. The data used in this article can be accessed by
contacting the corresponding author.
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Appendix A: Numerical solution for the
one-dimensional case

One-dimensional time–space fractional groundwater flow in
the unconfined aquifer with no recharge or leakage can be
written as

Sy
∂αh

(∂t)α
=
0(2−β)
x1−β

(
∂

∂x

)β
(
Ks
(
X
) t1−α
x1−β

0(2−β)
0(2−α)

h
∂βh

(∂x)β

)
. (A1)

The fractional time and space derivatives are estimated in
the same manner as seen in Tu et al. (2018), where the Ca-
puto fractional space and time derivatives in the fractional
governing equation are estimated by the numerical algo-
rithm in Odibat (2009) and the algorithm reported by Mu-
rio (2008), respectively. The Caputo fractional space deriva-
tive Dβx f (x)

∣∣∣
x=L

D
β
x g (x)

∣∣∣
x=L

at the location L form−1<
β ≤m (m ∈N ) for a given space interval [0,L] is estimated
as

Dβx g (x)
∣∣
x=L
≈

1Lm−β

0 (m+ 2−β)

{[
(N − 1)m−β+1

− (N −m+β − 1)1Lm−β
]
g(m) (0)+ g(m) (L)

+

N−1∑
i=1

[
(N − i+ 1)m−β+1

− 2(N − i)m−β+1

+ (N − i− 1)m−β+1
]
g(m) (li)

}
, (A2)

where N is the number of equally spaced subintervals on
[0,L]; the subinterval length is 1L= L/N and li = i1L,
for i = 0,1,2, . . .,N .

The Caputo fractional time derivative Dαt g (x, t)
∣∣
x=li ,t=tn

for 0< α ≤ 1 for a given time interval [0,T ], which is di-
vided into M equal subintervals with a time window of
1t = T/M by using the nodes tn = n1t , n= 0,1,2, . . .,M ,
can be approximated as

Dαt g
n
i =

1t−α

0 (2−α)

n∑
k=1

[
k1−α
− (k− 1)1−α

]
(
gn−k+1
i − gn−ki

)
. (A3)

Then the 1-D governing equation in fractional time and space
for Cartesian groundwater flow in an unconfined aquifer can
be discretized as

– for n= 1,

hni = h
n−1
i +

t1−αn

Sy1t−α

0 (2−β)

l
1−β
i

Gn−1
i . (A4)

– for n≥ 2,

hni = h
n−1
i +

t1−αn

Sy1t−α

0 (2−β)

l
1−β
i

Gn−1
i

−

n∑
k=2

[
k1−α
− (k− 1)1−α

](
hn−k+1
i −hn−ki

)
, (A5)

where G=
(
∂
∂x

)β [
Ks
(
X
) 0(2−β)
x1−β h

∂βh
∂xβ

]
, and the space and

time fractional derivatives in G are estimated as in Eqs. (A2)
and (A3).
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