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Abstract. Recent studies demonstrate that weather and climate predictions potentially improve by dynamically
combining different models into a so-called “supermodel”. Here, we focus on the weighted supermodel – the
supermodel’s time derivative is a weighted superposition of the time derivatives of the imperfect models, referred
to as weighted supermodeling. A crucial step is to train the weights of the supermodel on the basis of historical
observations. Here, we apply two different training methods to a supermodel of up to four different versions of
the global atmosphere–ocean–land model SPEEDO. The standard version is regarded as truth. The first training
method is based on an idea called cross pollination in time (CPT), where models exchange states during the train-
ing. The second method is a synchronization-based learning rule, originally developed for parameter estimation.
We demonstrate that both training methods yield climate simulations and weather predictions of superior quality
as compared to the individual model versions. Supermodel predictions also outperform predictions based on the
commonly used multi-model ensemble (MME) mean. Furthermore, we find evidence that negative weights can
improve predictions in cases where model errors do not cancel (for instance, all models are warm with respect
to the truth). In principle, the proposed training schemes are applicable to state-of-the-art models and historical
observations. A prime advantage of the proposed training schemes is that in the present context relatively short
training periods suffice to find good solutions. Additional work needs to be done to assess the limitations due
to incomplete and noisy data, to combine models that are structurally different (different resolution and state
representation, for instance) and to evaluate cases for which the truth falls outside of the model class.

1 Introduction

1.1 Premises and the multi-model ensemble

Although weather and climate models continue to improve,
they will inevitably remain imperfect (Bauer et al., 2015).
Nature is so complex that it is impossible to model all rele-
vant physical processes solely based on the fundamental laws
of physics (think, for instance, about the microphysical prop-
erties of clouds that determine the cloud radiational proper-
ties). Progress in predictive power crucially depends on fur-
ther improving our knowledge and the numerical represen-

tation of the physical processes the model is intended to de-
scribe. Nevertheless, with the best possible models in hand,
more accurate predictions can be obtained by making good
use of all of them, thus exploiting multi-model information.
In order to reduce the impact of model errors on predictions,
it is common practice to combine the predictions of a col-
lection of different models in a statistical fashion. This is re-
ferred to as the multi-model ensemble (MME) approach: the
MME mean prediction is often more skillful as model errors
tend to average out (Weigel et al., 2008), whereas the spread
between the model predictions is naturally interpreted as a
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measure of the uncertainty about the mean (IPCC, 2013). Al-
though MME tends to improve predictions of climate statis-
tics (i.e., mean and variance), a major drawback is that it is
not designed to produce an improved trajectory that can be
seen as a specific climate forecast, given that averaging un-
correlated climate trajectories from different models leads to
variance reduction and smoothing.

The foundation of modern weather and climate predic-
tion rests on the assumption that when an estimate of the
climate state is at disposal at a particular instance in time,
its time evolution can be calculated by a proper applica-
tion of a numerical discretization of the fundamental laws
of physics, supplemented by empirical relationships describ-
ing unresolved scales and a complete specification of the ex-
ternal forcing and boundary conditions. Integration in time
subsequently yields a predicted climate trajectory into the fu-
ture and formally frames the climate prediction endeavor as
a mixed initial and boundary conditions problem (see, e.g.,
Collins and Allen, 2002; Hawkins and Sutton, 2009). Initial
conditions, but also boundary conditions and external forc-
ing, are usually estimated by combining data with models
via data assimilation techniques (see, e.g., Carrassi et al.,
2018, for a review). Errors in the time derivative (i.e., the
model error) propagate into errors in the predicted trajectory
but model error also affects the model statistics, so that the
model and observed mean and variance differ, giving rise to
model biases.

An illustrative example of this propagation of model er-
rors is presented in Rodwell and Jung (2008) in relation to
a change in the model’s prescribed aerosol concentrations in
the region of the Sahara. Already, within the first few hours of
prediction, the different aerosol concentration leads to chang-
ing the stability and convection in the region. This in turn
changes the upper air divergence and promotes the genera-
tion of large-scale Rossby waves that travel horizontally east-
ward and northward into the Northern Hemisphere during the
subsequent week and finally impact the surface air temper-
atures in Siberia. This example demonstrates that a specific
model error can impact model prediction skills on far regions
and diverse variables. Furthermore, it suggests that, in order
to mitigate or in the best case to prevent model error from
growing and affecting the whole model phase space, it is bet-
ter to intervene at each model computational time step rather
than a posteriori by combining outputs after a prediction is
completed as in the MME approach.

1.2 Supermodeling

Reducing model errors early in the prediction is precisely
what supermodeling attempts to achieve (van den Berge
et al., 2011). In a supermodel, different models exchange in-
formation during the simulation at every time step and form a
consensus on a single best prediction. An advantage over the
standard MME approach is that the supermodel produces a
trajectory with improved long-term statistics. Improved tra-

jectories are extremely valuable for calculations of the im-
pact of climate on society. For instance, crop yields, spread
of diseases and river discharge all depend on the specific se-
quences of weather events, not just on statistics (Challinor
and Wheeler, 2008; Sterl et al., 2009; Van der Wiel et al.,
2019).

The supermodeling approach was originally developed
using low-order dynamical systems (van den Berge et al.,
2011; Mirchev et al., 2012) and subsequently applied to a
global atmosphere model (Schevenhoven and Selten, 2017;
Wiegerinck and Selten, 2017) and to a coupled atmosphere–
ocean–land model (Selten et al., 2017). A partial implemen-
tation of the supermodeling concept using real-world obser-
vations was presented in Shen et al. (2016). In the origi-
nal supermodeling concept, model equations are connected
by nudging terms such that each model in the ensemble is
nudged to the state of every other model at every time step.
For appropriate connections, the ensemble of models eventu-
ally synchronizes on a common solution that depends on the
strength of the connections. For instance, if all models are
nudged to a particular model that is not nudged to any other
model, the ensemble will follow that particular solution. By
training connections on observed data, an optimal solution is
found that is produced by the connected ensemble of mod-
els. This type of supermodel is referred to as connected su-
permodeling. Wiegerinck and Selten (2017) showed that in
the limit of strong connections the connected supermodel so-
lution converges to the solution of a weighted superposition
of the individual model equations, referred to as a weighted
supermodel.

A crucial step in supermodeling is the training of the con-
nection coefficients (for connected supermodels) or weights
(for weighted supermodels) based on data, the observations.
The first training schemes of supermodels were based on
the minimization of a cost function dependent on long sim-
ulations with the supermodel (van den Berge et al., 2011;
Mirchev et al., 2012; Shen et al., 2016). Given that iterations,
and thus many evaluations of the cost function, were nec-
essary in the minimization procedure, this approach turned
out to be computationally very expensive. Schevenhoven
and Selten (2017) developed a computationally very efficient
training scheme based on cross pollination in time (CPT),
a concept originally introduced by Smith (2001) in the con-
text of ensemble weather forecasting. In CPT, the models in a
multi-model ensemble exchange states during the simulation,
generating mixed trajectories that exponentially increase in
number in the course of time. As a consequence, a larger
area of phase space is explored, thus increasing the chance
that the observed trajectory is shadowed within the span of
all of the mixed model trajectories. Given the above, CPT
training is then based on the selection of the trajectory that
remains closest to an observed trajectory. Another alternative
efficient approach or training was introduced in Selten et al.
(2017) to learn the connections coefficients in a supermodel.
Their method, hereafter referred to as the “synch rule”, is
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based on synchronization and it is inspired by an idea origi-
nally proposed in Duane et al. (2007) for general parameter
learning.

Before supermodeling becomes suitable for the class of
large-dimensional state-of-the-art weather and climate mod-
els, we need to have training schemes that are computation-
ally suitable for that context. In this paper, we develop, apply
and compare CPT and the synch rule to train a weighted su-
permodel based on the intermediate complexity global cou-
pled atmosphere–ocean–land model SPEEDO (Severijns and
Hazeleger, 2010). Short-term supermodel prediction skill as
well as long-term climate statistics show that both training
methods result in supermodels that outperform the individ-
ual models. Furthermore, novel experiments with negative
weights, as opposed to the standard case of weights larger
than or equal to zero, suggest that even when the individual
model biases do not compensate for each other an improved
supermodel solution can be achieved.

In Sect. 2, the two types of supermodels, connected and
weighted, are introduced in detail. Section 3 describes the
global coupled atmosphere–ocean–land model SPEEDO and
the construction of a SPEEDO supermodel. The two train-
ing strategies are described in Sect. 4 with specific details
when applied to the SPEEDO model in Sect. 5. The results
of the training are shown in Sect. 6. The final section dis-
cusses the results and lists further steps to be taken towards
training a supermodel based on state-of-the-art weather and
climate models using real-world observations.

2 Weighted and connected supermodeling

To make the supermodeling approach more explicit, we for-
mally write the model equations of a weather or climate
model i as

ẋi = f i
(
xi,pi

)
, (1)

where xi is a high-dimensional state vector, and f i a non-
linear evolution function depending on the state xi and on
a number of adjustable parameters pi . In practice, weather
and climate models generally differ in the representation of
the climate state, i.e., the phase where xi is defined, the evo-
lution function and parameter values. In this stage of devel-
oping the supermodeling approach and training schemes, we
simplify the context and focus on a situation where the mod-
els share the same evolution function, f , and the same phase
space, so that xi ∈ Rn for all i. However, the models differ in
the parameters, pi 6= pj if i 6= j . The approach can be gen-
eralized using data assimilation approaches (Du and Smith,
2017). We will furthermore denote the “truth” as given by
the model f with a specific set of parameters. An ensem-
ble of imperfect models can be dynamically combined in a
weighted or connected supermodel.

2.1 Weighted supermodeling

A weighted supermodel based on two imperfect models is
given by

ẋ1 = f
(
xs,p1

)
(2a)

ẋ2 = f
(
xs,p2

)
(2b)

ẋs =W1ẋ1+W2ẋ2, (2c)

where xs ∈ Rn represents the supermodel state vector and
diagonal matrices W1 = diag(w1) with w1 ∈ Rn denote the
weights. In the weighted supermodel, the states are imposed
to be perfectly synchronized. Training a weighted super-
model implies training the weights wi .

2.2 Connected supermodeling

For completeness and for comparison of the weighted su-
permodels with the connected supermodel from Selten et al.
(2017), we introduce the equations for the connected su-
permodel. A connected supermodel based on two imperfect
models is given by

ẋ1 = f
(
x1,p1

)
−C12 (x1− x2) (3a)

ẋ2 = f
(
x2,p2

)
−C21 (x2− x1) (3b)

ẋs =
1
2

(ẋ1+ ẋ2) . (3c)

Note the nudging terms (the rightmost terms in Eq. 3a
and 3b) that push the state of each model to the state of the
other at every time step. The size of the nudging terms C12
and C21 reflects the strength of the coupling between the two
models. They have the form of diagonal matrices ∈ Rn×n
and can thus be written as C12 = diag(c12) with c12 ∈ Rn.
The diagonal form reflects the fact that each model state vec-
tor component is nudged towards the same component of the
other model. The approach can be extended to be multivariate
allowing for cross nudging, but this will require careful scal-
ing of the variables. For appropriate connections, the models
fall into a synchronized motion (Pecora and Carroll, 1990).
Because in general the synchronization will not be perfect
due to the different parameter values, the supermodel solu-
tion xs is defined as the average of the different model states.
Note that the states will be close for strong connections so
that smoothing and loss of variance due to the averaging will
be limited. The supermodel solution depends on the relative
strengths of connection coefficients. Training a connected su-
permodel implies training the value of the connection coeffi-
cients.

A connected supermodel allows for more flexibility in
the event that the ensemble is not perfectly synchronized
(Wiegerinck et al., 2013). In regions of phase space of strong
divergence, for instance, one model can pull the ensem-
ble along if it takes a very different trajectory. However,
in Wiegerinck et al. (2013), it is noted that the size of the
connection coefficients after training is typically quite large.
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The larger the coefficients, the stronger the models converge
on a synchronized trajectory, which can be described by a
weighted superposition of the models (Wiegerinck et al.,
2013). Since for some training applications, perfect synchro-
nization is required as we shall see in Sect. 4, only weighted
supermodels are considered in this paper. We do not limit
ourselves to combining only two imperfect models into a su-
permodel; also, combining four imperfect models will be dis-
cussed.

3 SPEEDO climate model

The SPEEDO global climate model consists of an atmo-
spheric component (SPEEDY) that exchanges information
with a land (LBM) and an ocean–sea-ice component (CLIO)
using coupling routines (Fig. 1). The coupling routines per-
form re-gridding operations between the computational grids
of the different modules. A detailed description of SPEEDO
can be found in Severijns and Hazeleger (2010); Selten et al.
(2017).

The atmospheric model SPEEDY describes the evolution
of the two horizontal wind components U (east–west) and
V (north–south), temperature T and specific humidity q at
eight vertical levels and the surface pressure ps. Relatively
simple calculations of heating and cooling rates due to ra-
diation, convective transports, cloud amounts, precipitation
and turbulent heat, water and momentum exchange at the sur-
face are performed at a computational grid of approximately
3.75◦ horizontal spacing (48× 96 grid cells).

SPEEDY exchanges water and heat with the land model
LBM that uses three soil layers and up to two snow layers
to close the hydrological cycle over land and a heat budget
equation that controls the land temperatures. The horizontal
discretization is the same as for the atmosphere model. The
land surface reflection coefficient for solar radiation is pre-
scribed using a monthly climatology. Each land bucket has a
maximum soil water capacity. The runoff is collected in river
basins and drained into the ocean at specific locations of the
major river outflows.

SPEEDY exchanges heat, water and momentum with the
ocean model CLIO (Goosse and Fichefet, 1999). CLIO de-
scribes the evolution of ocean currents, temperature and
salinity on a computational grid of 3◦ horizontal resolution
and 20 unevenly spaced layers in the vertical. A three-layer
thermodynamic–dynamic sea-ice model describes the evolu-
tion of sea ice in the event that ocean temperatures drop be-
low freezing levels. Heat storage in the snow–ice system is
accounted for and snow amounts and ice thickness evolve in
response to surface and bottom heat fluxes. Sea ice is con-
sidered to behave as a viscous–plastic continuum as it moves
under the action of winds and ocean currents.

Formally, the SPEEDO equations can be written as

Figure 1. Schematic representation of the SPEEDO climate model.
The atmosphere needs surface characteristics (temperature, rough-
ness, reflectivity, soil moisture) in order to calculate the exchange
of heat, water and momentum. Coupler software communicates this
information between the components and interpolates between the
computational grids.

ȧ = f a (a;pa)
+ga

(
eh,ew,em

)
(4a)

ȯ= f o (o;po)
+go

(
Poeh,Poew,Poem,Por

)
(4b)

l̇ = f l
(
l;pl

)
+gl

(
P leh,P lew,r

)
, (4c)

where a is the atmospheric state vector, o the ocean/sea-ice
state vector, l the land state vector, eh the heat exchange vec-
tor between atmosphere and surface, ew the water exchange
vector, em the momentum exchange vector and r the river
outflow vector describing the flow of water from land to
ocean. The exchange vectors depend on the state of the at-
mosphere and the surface but this dependency is not made
explicit in Eq. (4) to simplify the notation. The projection
operators P represent the regridding operations between the
computational grids. These operations are conservative so
that the globally integrated heat and water loss of the atmo-
sphere at any time at the surface equals the integrated heat
and water gain of the land and ocean. The non-linear func-
tions f represent the cumulative contribution of the modeled
physical processes to the change in the climate state vector
and depend on the values of the parameter vectors p. Some
of these parameters go through a daily and/or seasonal cy-
cle and/or have a spatial dependence like the reflectivity of
the surface. The non-linear functions g describe how the ex-
change of heat, water and momentum between the subsys-
tems affects the change of the climate state vector.

3.1 SPEEDO supermodel

The training experiments of this study are evaluated in a
noise-free observation framework, with perfect observations
generated by sampling a reference model trajectory. This
“perfect model” provides a set of time-ordered observations,

Earth Syst. Dynam., 10, 789–807, 2019 www.earth-syst-dynam.net/10/789/2019/



F. Schevenhoven et al: Training of supermodels 793

Figure 2. Schematic representation of the SPEEDO climate super-
model based on two imperfect atmosphere models. The two atmo-
sphere models exchange water, heat and momentum with the perfect
ocean and land model. The ocean and land models send their state
information to both atmosphere models. The atmosphere models ex-
change state information in order to combine their time derivatives.

called the “truth”. We consider the SPEEDO climate model
with standard parameter values as truth and create imperfect
models by perturbing parameter values in the atmospheric
component. A supermodel is formed by combining the im-
perfect atmosphere models through a weighted superposition
of the time derivatives of the imperfect models (Eq. 2) which
are each coupled to the same ocean and land model (Fig. 2).
All atmosphere models receive the same state information
from the ocean and land model but each calculates their own
water, heat and momentum exchange. On the other hand,
the ocean and land model receive the multi-model weighted
average of these atmospheric components; this follows the
interactive ensemble approach (Kirtman and Shukla, 2002).
Following Eq. (2), the SPEEDO weighted supermodel equa-
tions are given by

ȧi = f a (as;p
a
i

)
+ga

(
eh
i ,e

w
i ,e

m
i

)
(5a)

ȯ= f o (o;po)
+go

(
Poeh,Poew,Poem,Por

)
(5b)

l̇ = f l
(
l;pl

)
+gl

(
P leh,P lew,r

)
(5c)

ȧs =
∑
i

Wi ȧi, (5d)

where ȧs denotes the time derivative of the supermodel, Wi

values denote diagonal matrices with weights on the diago-
nal, i refers to imperfect model i, and the overbar denotes a
weighted average over the models.

4 Learning methods

Two different learning strategies are evaluated in this study
in order to train the SPEEDO weighted supermodel: learning
based on CPT as developed and applied to low-order dynami-
cal systems in Schevenhoven and Selten (2017), and learning
based on synchronization as applied to a connected SPEEDO
supermodel in Selten et al. (2017).

4.1 Cross pollination in time

The CPT learning approach is based on an idea proposed by
Smith (2001). CPT “crosses” trajectories of different mod-
els in order to create a larger solution space. The aim is to
generate trajectories that follow the truth more closely. The
training phase of CPT starts from an observed initial condi-
tion in state space. For simplicity, assume the model is one-
dimensional. From the same initial state, the imperfect mod-
els compute one time step each ending in a different state.
Next, all models compute another time step from each of
these new states. Continuing this process leads to a rapid in-
crease in the number of trajectories with time (Fig. 3a) that
will ultimately cover a larger area of the state space. Among
the full set of mixed trajectories, the one which is closest
to the truth (i.e., to the data) is continued; the others are
discarded, resulting in a pruned ensemble, as is depicted in
Fig. 3b.

In the case of a multi-dimensional model, such as
SPEEDO, it is possible that at each time step different models
are closest to the truth for different state variables and at dif-
ferent grid locations. In this case, we continue per state vari-
able with the model that is closest. This means that the initial
state for the next time step can consist of a combination of
models. As the values for the different state variables might
not be in agreement with each other, this creates imbalances
that can lead to numerical instabilities. A (partial) solution is
to decrease the time step, as we shall see in Sect. 5.

The training period is terminated when the CPT trajectory
starts to deviate from the truth beyond a given pre-specified
threshold. After training, an optimal trajectory is obtained
that is produced by a combination of different imperfect
models (Fig. 4). Next, we count how often during training
each model has produced the best prediction of a particular
component of the state vector. This frequency of occurrences
is used to compute weights W for the corresponding time
derivative of the state vector. This superposition of weighted
imperfect models forms a weighted supermodel, as expressed
in the example of Eq. (2).

4.2 Synchronization-based learning

For the training of a supermodel based on synchronization, a
learning rule (the synch rule) is used that updates the weights
such that synchronization errors between truth and super-
model are minimized. In contrast to CPT learning, initial val-
ues for the weights need to be chosen and the weights are
updated during training. Under certain conditions, the super-
model will fall into synchronized motion with the truth as
the weights are updated and the supermodel is nudged to the
truth (black arrows in Fig. 5).

The synch rule for the weights is an application of the gen-
eral synchronization-based parameter estimation approach
suggested in (Duane et al., 2007). Recently, the synch rule
was applied to train the connections in a connected SPEEDO
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Figure 3. Adapted from Schevenhoven and Selten (2017). A one-dimensional schematic of CPT for three models, a full ensemble (a) and
a pruned ensemble (b). Note that the “truth” has been drawn here as a continuous line for illustrative purpose. In practice, the truth is only
known at discrete times (the observation times) and the distance with respect to model trajectories is computed at those times only.

Figure 4. CPT trajectory after a training period of 20 time steps. Model 1 is used for 6 out of 20 time steps; hence, model 1 will get a weight
of 0.3.

supermodel (Selten et al., 2017). We follow a similar strat-
egy and implement the synch rule to train the weights of a
weighted SPEEDO supermodel.

In the context of two dynamical systems that differ in pa-
rameter values only, the general synch rule for parameter es-
timation is given by

ẋ = f (x;p) (6a)
ẏ = f (y;q)−K(y− x) (6b)

q̇j =−δj
∑
i

ei
∂fi(y,q)
∂qj

, (6c)

where p and q are vectors of parameters. K(y− x) is a con-
necting term between the two systems that nudges y to-
wards x. K is a diagonal matrix of nudging coefficients,
K= diag(k). Suppose the two systems (Eq. 6a and 6b) syn-
chronize if p = q; that is, as t→∞, y(t)→ x(t). We fur-
ther assume that the parameters appear only linearly in the
model equations. Then it can be proven that, using the learn-

ing rule (Eq. 6c), even if the two systems are not identical,
p 6= q, the systems will still synchronize and the parameters
will become equal, q(t)→ p as t→∞. Here, qj denotes
the parameter values, with j indexing the elements of the
parameter vector. Furthermore, ei = yi − xi denotes the syn-
chronization error at the current time step with i indexing the
elements of the state vector and δj an adjustable rate of learn-
ing scaling factor. At every time step, the update q̇j for the
weight qj is calculated.

In training a supermodel, we assume that the truth can
be described by a weighted dynamical combination of im-
perfect models with the weights as adjustable parameters.
In this case, the function f corresponds to the supermodel
time derivative, q corresponds to the weights of the super-
model, x denotes the truth and y the supermodel solution.
The derivative of f with respect to a certain weight is the
tendency of the imperfect model belonging to that weight
(see Eq. 2c). In our SPEEDO case, the truth cannot exactly
be described as a weighted superposition of imperfect mod-
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Figure 5. At each observation (dots) of the truth (continuous black line), the weights of the imperfect models (red, blue) are updated which
gives a new supermodel solution (green dotted line). The black arrows indicate the nudging to the truth.

els since the perturbed parameters do not appear linearly in
the equations, yet the approximation is close enough for the
learning rule to work well.

Integration of the synch rule implies that as long as the
time series of the synchronization error ei and the effect
of the parameter on the imperfect model evolution ∂fi (y,q)

∂qj

are correlated, the parameter will be updated. For instance,
when a parameter update systematically enhances warming
in the model when the model is colder than the truth and
the same holds when the parameter update systematically
cools the model when it is too warm, then the updated pa-
rameter will decrease the synchronization error between the
model and truth over time. When this correlation vanishes,
there is no systematic relation anymore between updating
the parameter and the state of the model; then systematic up-
dates cease. When perfect synchronization is reached (hence,
ei = 0), naturally updates also stop.

5 Training in SPEEDO

In training the SPEEDO supermodel, we regard the at-
mospheric model with standard parameter values as truth,
whereas imperfect atmospheric models are created by per-
turbing those parameter values. Figure 6 depicts the config-
uration during training. All atmosphere models are indepen-
dently coupled to the same ocean and land model. They each
calculate their own water, heat and momentum fluxes and
receive the information from the ocean and the land model
from the truth only.

During training, the truth and imperfect models all share
their states. In the case of CPT, this state information is used
by each imperfect model to check which model is closest
to the truth and continue the integration from that state. In
the case of the synch rule, this state information is used to
calculate the synchronization error between the supermodel
and the truth.

Application of the synch rule to a weighted SPEEDO su-
permodel of two imperfect models implies integration of the
following set of equations:

Figure 6. Schematic representation of the SPEEDO system during
training (Selten et al., 2017).

ȧ0 = f a (a0;p
a
0
)
+ga

(
eh

0,e
w
0 ,e

m
0

)
(7a)

ȧ1 = f a (as;p
a
1
)
+ga

(
eh

1,e
w
1 ,e

m
1

)
−K (as− a0) (7b)

ȧ2 = f a (as;p
a
2
)
+ga

(
eh

2,e
w
2 ,e

m
2

)
−K (as− a0) (7c)

ȯ= f o (o;po)
+go

(
Poeh

0,P
oew

0 ,P
oem

0 ,P
or
)

(7d)

l̇ = f l
(
l;pl

)
+gl

(
P leh

0,P
lew

0 ,r
)

(7e)

ȧs =W1ȧ1+W2ȧ2 (7f)
Ẇi,j =−δj

(
as,j − a0,j

)
ȧi,j , (7g)

where index 0 refers to the truth andWi,j refers to the weight
of model i and state vector element j . During training, we
choose a uniform nudging strength corresponding to a 24 h
timescale, as motivated by Selten et al. (2017). They showed
that, for this value of K, two connected identical SPEEDO
models (perfect model scenario) almost perfectly synchro-
nize with very small synchronization errors in temperatures
of the order of 0.01 ◦C. Imperfect models, on the other hand,
have synchronization errors with respect to the truth that are
usually 10 times larger.
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5.1 Construction of imperfect models

In order to be able to compare results of the weighted super-
models of this study to the connected supermodels in Selten
et al. (2017), we choose the same parameter values for the
imperfect models. These parameters are the convection relax-
ation timescale, the relative humidity threshold and the mo-
mentum diffusion timescale. The reason to perturb these pa-
rameters is because the uncertainty in climate models mostly
lies in the parameterization of clouds and convection, and
perturbing these parameters in the SPEEDO model results in
a spread in the simulated climate that characterizes this un-
certainty. The parameters are listed in Table 1, where model 1
and model 2 correspond to the imperfect models of Selten
et al. (2017). The impact of the parameter perturbations on
the climate (i.e., long-term behavior) of the models is as-
sessed on the basis of 40-year simulations initiated on 1 Jan-
uary of model year 2001 of a long control simulation as in
Selten et al. (2017). Table 2 shows the global mean average
difference between the truth and the imperfect models of Ta-
ble 1 for different variables. From the table, it appears evi-
dent how the imperfect models all drift away from the truth
giving rise to biases. For example, the global mean temper-
ature of imperfect model 1 rises about 1.4 ◦C within a cou-
ple of decades, whereas model 2 cools around 0.4 ◦C. These
global mean temperature biases are comparable to the biases
of state-of-the-art global climate models compared to real-
world observations (IPCC, 2013).

The first supermodel that we will train will consist of a
weighted superposition of models 1 and 2. The second super-
model will consist of a weighted superposition of models 1,
3, 4 and 5. The parameter values of these models are cho-
sen such that they form a so-called convex hull around the
true parameter values (see Schevenhoven and Selten, 2017
for a discussion on the convex hull principle). Note that we
use only two perturbed values for each parameter; the im-
perfect models differ only in the combination of these val-
ues, such that in the four-model supermodel, a convex hull
is formed. This implies that, provided the model functional
dependence on the parameters is linear, the true parameter
values can be obtained as a linear combination with positive
coefficients/weights of the four parameter values of the im-
perfect models. While these conditions do not perfectly hold
in this case, we expect that we can create a weighted super-
model based on these four models that will be close to the
truth. All of these four models overestimate the global mean
temperature and precipitation (Table 2). Therefore, simply
taking the MME mean with positive weights will not pro-
duce a climatology closer to the truth. However, we expect
that, based on the convex hull principle, the weighted super-
model will nevertheless be able to produce a climatology that
is closer to the truth.

The third supermodel consists of a weighted superposition
of models 1 and 6. In this case, both imperfect models have
parameter values that are smaller than the corresponding true

Table 1. Parameter values of perfect and imperfect models.

Model Convection Relative Momentum
relaxation humidity diffusion
timescale threshold timescale

Perfect 6 h 0.9 24 h
Model 1 4 h 0.85 18 h
Model 2 8 h 0.95 30 h
Model 3 4 h 0.95 30 h
Model 4 8 h 0.95 18 h
Model 5 8 h 0.85 30 h
Model 6 3 h 0.75 14 h

values. A weighted superposition with positive weights does
not correspond to a model with parameter values that are
closer to the truth. Note that both models overestimate the av-
erage temperature and precipitation (Table 2); hence, taking
the MME mean with positive weights also does not produce
a climatology closer to the truth. In this case, we will explore
whether a weighted supermodel with negative weights can be
trained in order to improve the climatology and short-term
forecasts.

5.2 Global weights

For both CPT and the synch rule, we choose to work with
global weights, which means that for each meteorological
variable we use the same weight at every grid point. In princi-
ple, one could allow different weights per each grid point but
it could induce dynamic imbalances that pull the model away
from its attractor. The model’s reaction is then to restore the
dynamical balances and return to its own attractor (Pecora
and Carroll, 1990). In SPEEDO, this leads to the generation
of fast gravity waves and fast convective adjustments. An ad-
equately small time step is required in order to prevent nu-
merical instabilities. We choose instead to use global weights
in order to limit the computational time.

5.3 Exchange of state information

The SPEEDO model has five prognostic variables: temper-
ature, vorticity, divergence, specific humidity and surface
pressure (T , VOR, DIV, TR, PS). Best results were obtained
by limiting the weighted averaging of state information to
temperature, vorticity and divergence only. We suspect that
exchanging specific humidity and surface pressure leads to
imbalances and fast spurious adjustments that deteriorate the
supermodel solution. We found that a perfect SPEEDY atmo-
sphere only fully synchronizes with the truth when at least
temperature, vorticity and divergence are nudged to the truth
(not shown). Therefore, in a weighted supermodel, at least
these variables need to be exchanged.
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Table 2. Global mean average difference between the imperfect models and the perfect model, calculated over the last 30 years of the
simulation.

Model Temperature Precipitation Wind at Wind at Solar Cloud cover
(◦C) (mm d−1) 200 hPa 850 hPa surface (%)

(m s−1) (m s−1) radiation
(W m−2)

Model 1 1.37 0.11 1.04 0.07 2.06 −1.59
Model 2 −0.38 −0.04 −0.31 −0.03 −1.13 0.87
Model 3 0.99 0.10 1.14 0.06 1.21 −1.03
Model 4 0.45 0.04 −0.04 −0.01 −0.20 0.10
Model 5 0.86 0.08 0.72 −0.01 −0.19 −0.12
Model 6 3.20 0.26 2.25 0.03 3.95 −3.37

5.4 Required time step

We found that smaller time steps were required during CPT
training as compared to standard integrations. Gravity waves
induced by the state replacement during training require a
smaller time step in order to prevent numerical instabilities.
We found that a 15 min time step was sufficient with our
choice of imperfect models, which is half the time step of
the standard integration.

5.5 Initialization of the weights for the synch rule

In CPT training, the sum of the weights is normalized to 1.
In the application of the synch rule, on the other hand, the
sum of the weights is not explicitly constrained. One can
start from zero weights and let the synch rule find the optimal
set of weights. Initializing weights with a sum larger than 1
easily leads to numerical instabilities because the weighted
mean state becomes more energetic. Imposing the constraint
of the sum of weights being 1 during the training also led
to numerical instabilities. We chose to initialize with equal
weights that sum to 1.

5.6 Rate of learning in the synch rule

The synch rule contains an adjustable rate of learning scal-
ing factor δj , with j the index of the state vector. A large
rate of learning is desirable since it leads to faster conver-
gence and shorter training periods. However, the parameters
should vary on a slower timescale than the dynamical vari-
ables and this provides an upper bound for the value of δj .
Furthermore, it turns out that if δj is too large, the sum of the
weights can become greater than 1, which easily leads to nu-
merical instabilities. The size of δj in the synch rule depends
on the variable that is being exchanged and was determined
by trial and error during the training experiments. The largest
values for δj that resulted in converged weights were on the
order of 107 for divergence and vorticity and 10−4 for tem-
perature. With these scaling factors, approximately similar
rates of learning were achieved for the different variables.
This makes sense since the state values for divergence and

vorticity are much smaller than for temperature, so the prod-
uct of δj and the state values in the synch rule is of the same
order of magnitude.

5.7 Weights for the heat, water and momentum fluxes

In the experimental setup during training, we assume a per-
fect ocean and land models which receive fluxes from the
perfect atmosphere. However, in the supermodel setup, per-
fect fluxes are not available and we use a weighted combina-
tion of the fluxes from both imperfect models instead. In the
connected supermodel of Selten et al. (2017), the fluxes are
averaged using equal weights. In this paper, we further opti-
mize the weights for the fluxes, because we found they have
a big influence on the supermodel’s performance. In partic-
ular, we selected weights given by the average of the three
weights for the prognostic variables. To check whether this
choice was optimal, we used a least squares minimization
method in order to optimize the weights for the fluxes. Dur-
ing 1 year of training, the fluxes from the perfect and imper-
fect models were saved at every time step. The weights were
determined by a least squares fit of a weighted sum of the
imperfect fluxes to the perfect fluxes. The flux weights ob-
tained from the minimization method did differ slightly per
flux (heat, water or momentum flux), but the average weights
were close to the average of the weights for the prognostic
variables.

6 Results

We describe the learning results and the forecast short- and
long-term capabilities of the three supermodel configurations
separately.

6.1 Supermodels based on two imperfect models

We first trained a weighted supermodel based on imper-
fect models 1 and 2 (see Table 1), applying both CPT and
the synch rule. As a benchmark, we compare the quality of
the weighted supermodel after training with the connected
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Figure 7. Calculation of weights for a supermodel constructed from two imperfect models using two different training schemes. (a) CPT
weights calculated during a training period of 1 week estimated for each week of a year. (b) Weights for the synch rule during a training
period of 1 year.

SPEEDO supermodel of Selten et al. (2017). This super-
model is based on the same imperfect models and was trained
by the synch rule.

Ideally, both CPT and the synch rule should produce con-
verged weights, i.e., weights that remain stable if the training
period is extended. The required length of the training pe-
riod for the convergence of the two methods turns out to be
very different. For CPT, a training period as short as a couple
of days produces converged weights, whereas for the synch
rule it takes about a year. Note that we limit the CPT train-
ing period to a week, as the CPT trajectory starts to deviate
significantly from the truth after approximately 10 days. The
reason that CPT diverges from the truth is because we have
a limited ensemble size. With non-linear processes causing
rapid error growth, the truth soon falls outside the limited
ensemble. The problem is exacerbated by replacing a model
state with state variables mixed from different models which
introduces imbalances that cause additional error growth.

In order to check the difference between the CPT weights
during a year, the CPT method is applied for each week dur-
ing 1 year. After each week, the values for all prognostic
variables are reset to the truth, and the procedure is repeated.
Figure 7a shows the values of the weights during training.
The weights for both temperature and vorticity remain fairly
constant. The weights for divergence vary within 0.04 of a
mean value. For the final supermodel weights, we just take
the average over the whole year (Table 3).

Using the synch rule, weights for temperature and vortic-
ity converge within the first couple of weeks, whereas for
divergence the weights cannot be learned faster than within
a year in order to avoid numerical instabilities (see Fig. 7b).
When using the synch rule, the weights converge to similar
values as compared to the CPT training (Table 3). Converged
values of both methods are within 0.05. Whether these small
differences matter for climate and weather forecasts will be
assessed in the next two sections. Although not imposed, the

Table 3. Weights for the supermodel trained by CPT and the synch
rule. Between brackets, the standard deviation over the year (CPT)
or the standard deviation over the last 10 weeks of training (synch
rule) is given.

Model Method T VOR DIV

Model 1 CPT 0.30 (0.016) 0.39 (0.007) 0.35 (0.031)
Model 2 0.70 (0.016) 0.61 (0.007) 0.65 (0.031)

Model 1 Synch rule 0.35 (0.0043) 0.38 (0.0018) 0.34 (0.0052)
Model 2 0.65 (0.0043) 0.62 (0.0018) 0.66 (0.0053)

training yields sum of weights equal to 1 as an optimal solu-
tion.

6.1.1 Climate measures

The imperfect models and the supermodel are integrated for
40 years in time, starting from 1 January of model year 2001.
The climatology is defined as the average over years 11–
40. The error in the climatology is defined as the root of
the global mean squared error (RMSE) between the model
and the truth. In addition, the perfect model is integrated for
40 years from a slightly perturbed initial condition, in order
to obtain an estimate of the sampling error, i.e., to estimate
the representativeness of the errors of the different models.
Global mean time series for surface air temperature, precip-
itation, surface solar radiation and cloud cover for the dif-
ferent models show that both weighted supermodels behave
very similar and remain close to the perfect model (Fig. 8).
The errors in the climatologies of the various fields of both
supermodels are much reduced as compared to both im-
perfect models and are indistinguishable from the statistical
sampling error of the perfect model. Both training methods
succeed in greatly improving the simulation of the climate.
Compared to the trained connected supermodels of Selten
et al. (2017), the weighted supermodels have reduced clima-
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Figure 8. Global mean time series for the perfect model, the imperfect models and the two supermodels trained by CPT and the synch rule.
The normalized root mean squared error (RMSE) in the climatology of model years 2011–2040 with respect to the climatology of the truth
is given in each panel. The normalization is such that the expected value of the perfect model error is 1.

tological errors (see Fig. 15). Training of a connected super-
model by the synch rule on the other hand is more efficient
as faster learning rates could be used, leading to convergence
within 2 weeks of training.

A spatial characterization of the performance of the su-
permodel in simulating the climatology of the zonal wind at
200 hPa is given in Fig. 9. Clearly, both supermodels outper-
form the imperfect models and their local errors are of simi-
lar magnitude as the sampling error of the perfect model. We
computed an optimal weighted average of the climatology of
both imperfect models (optimal in the sense that the RMSE in
the climatology is minimized) as in Selten et al. (2017). This
MME mean climatology (Fig. 9f) has errors of the same or-
der of magnitude as both trained weighted supermodels due
to fact that the imperfect model errors are near-mirror images
of each other.

In the context of simpler models, Schevenhoven and Selten
(2017) noted that CPT training of a couple of days duration
was sufficient to reduce climatological errors substantially,
and this result carries over to the complex SPEEDO model
used here. This notion that errors in fast processes contribute
substantially to errors in the long-term mean state is also sup-
ported by other studies, for example, by Rodwell and Palmer
(2007). Since the climatological errors are reduced, we ex-

pect the trained supermodels to produce better short-term
forecasts as compared to the imperfect models.

6.1.2 Forecast quality

In order to assess the quality of short-term forecasts, we ini-
tialized the various models from slightly perturbed states of
the truth and integrated the models for 2 weeks. We selected
25 initial states, 2 weeks apart, starting 1 January, so the
forecasts cover almost 1 year. The quality of the forecast is
measured by the RMSE in the global surface air tempera-
ture forecast, averaged over the 25 forecasts, and is shown
in Fig. 10. In these forecasts, the atmosphere models are
forced by the ocean and land conditions of the truth; this
is to exclude error growth related to the coupled interac-
tions. As expected, the RMSE in surface air temperature of
the perfect model is the one growing the slowest, and it is
still as small as about 0.3 ◦C at day 14. On the other hand,
the forecast errors of both imperfect models is 0.3 ◦C around
day 3 and grow to over 3 ◦C at day 14. Both trained weighted
supermodels reach 0.3 ◦C around day 8 and over 1 ◦C at
day 14. For comparison, we computed the forecast error of
the weighted mean forecast of both imperfect models using
the same weights as those used in Fig. 9 in the calculation
of the optimal climatology. This MME mean forecast has
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Figure 9. Difference in the zonal wind at 200 hPa averaged over model years 2011–2040 for the various models with respect to the truth.
Contours denote areas where the difference is larger than the sampling error at 95 % confidence (solid for positive difference; dotted for
negative). Positive values imply stronger mean winds blowing eastward. Units: m s−1.

smaller forecast errors than the imperfect models, yet both
supermodels are clearly superior.

6.2 Supermodels based on four imperfect models
forming a convex hull

As explained in Sect. 5.1, the parameter perturbations of
models 1, 3, 4 and 5 form a convex hull around the true pa-
rameter values (Table 1). We therefore expect to be able to
create a weighted supermodel based on these four models
that will be close to the truth, despite the fact that all four
have a warmer climatology than the truth (see Table 2). The
weights are trained using both CPT and the synch rule in the
same way as in the previous case with two imperfect models

and are shown in Fig. 11; nevertheless, given that the super-
models are now based on four imperfect models, the number
of weights is doubled. Again, the weights during CPT train-
ing vary from week to week within 0.05 and converge within
a year using the synch rule. Weights for vorticity turn out to
be a special case, since the change in vorticity as calculated
by imperfect models 1 and 3 is equal to, respectively, mod-
els 4 and 5. The reason is that only the perturbation in the mo-
mentum diffusion timescale affects the vorticity change, and
models 1 and 3 have the same diffusion timescale as in mod-
els 4 and 5, respectively. Therefore, their weights are equal.
Table 4 denotes the final supermodel weights, where for vor-
ticity the weight is equally distributed over models 1 and 4
and models 3 and 5.
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Figure 10. Forecast quality as measured by the RMSE of the truth
and a model with a perturbed initial condition. The control is the
difference between the perfect model and the perfect model with a
perturbed initial condition.

Table 4. Weights for the supermodel trained by CPT and the synch
rule. Between brackets, the standard deviation over the year (CPT)
or the standard deviation over the last 10 weeks of training (synch
rule) is given.

Model Method T VOR DIV

Model 1 CPT 0.01 (0.005) 0.19 (0.022) 0.12 (0.017)
Model 3 0.33 (0.030) 0.31 (0.037) 0.28 (0.024)
Model 4 0.40 (0.009) 0.19 (0.022) 0.41 (0.028)
Model 5 0.26 (0.026) 0.31 (0.040) 0.19 (0.023)

Model 1 Synch rule 0.01 (0.0070) 0.19 (0.0007) 0.00 (0.0064)
Model 3 0.42 (0.0072) 0.31 (0.0007) 0.27 (0.0047)
Model 4 0.37 (0.0065) 0.19 (0.0007) 0.44 (0.0044)
Model 5 0.20 (0.0062) 0.31 (0.0007) 0.29 (0.0029)

The values of the weights for vorticity trained by the synch
rule are very close to the values obtained by CPT train-
ing. This is not the case for temperature and divergence.
For temperature, CPT puts 10 % less weight on imperfect
model 3 compared to the synch rule and a 10 % stronger
weight on model 1 for divergence. The synch rule puts (al-
most) zero weight on imperfect model 1. This is because im-
perfect model 1 calculates exactly the same vorticity change
as imperfect model 4; hence, the synch rule suggests that im-
perfect model 1 has no added value in the weighted super-
model. Again, the synch rule training yields sum of weights
equal to 1 as an optimal solution. Using these weights, we
will compare the climatology and forecast skill of both su-
permodels.

6.2.1 Climate measures and forecast quality

We repeated similar climate integrations as in the case of the
supermodels based on two imperfect models and assessed
the climatological errors. By comparing the 40-year time se-
ries of global mean values in Fig. 12, both supermodels re-
main close to the perfect model and are clearly superior to
all the imperfect models. Despite all imperfect models be-
coming too warm and precipitating too much on the global

scale, the supermodels balance model deficiencies and pro-
duce climate simulations that are close to the truth. Inspec-
tion of the RMSE of the 30-year mean fields in the different
figure panels indicates that for temperature the supermodel
with weights from the CPT training is substantially better
than the supermodel with weights from the synch rule. Re-
call that while imperfect model 1 almost does not contribute
to the supermodel with the weights from the synch rule, it
does so for the supermodel with the weights from the CPT
training. Although imperfect model 1 has larger climatologi-
cal errors than the other imperfect models (Fig. 12), it never-
theless improves the quality of the CPT supermodel.

This experiment demonstrates the potential of supermod-
els to mitigate common errors and thereby clearly outper-
form the standard MME approach. Since all imperfect mod-
els overestimate the global average temperature and simulate
too much precipitation, a standard weighted MME approach
results in a climatological forecast worse than the best im-
perfect model. In the case that the imperfect parameters form
a convex hull around the true parameter values, we may ex-
pect that a supermodel can be constructed with a climatology
much closer to the truth as compared to the best imperfect
model. In the case that the imperfect models do not form a
convex hull around the true parameter values, allowing nega-
tive weights in the weighted supermodel might still improve
the climatology and forecast skill. This will be explored in
the next section.

We repeated the same forecast experiment as in the case
of the supermodel based on two imperfect models. Also, in
this case, the supermodels have forecast errors that are sub-
stantially reduced as compared to the imperfect models, up
to a factor of 3 smaller (not shown). Both supermodels have
comparable forecast skill in this measure.

6.3 Negative weights

The CPT training method only produces positive weights,
since the weights are defined as being equal to the frequency
that the solution of a particular model is closest to the truth
during the training period. The synch rule training, on the
other hand, does not impose any constraint on the weights.
The weights came out positive due to the convex hull prin-
ciple: the imperfect models considered so far surrounded the
truth and with positive weights the effect of the true param-
eter values can be approximated. But in the event that the
imperfect models have parameter values that are all smaller
or larger than the truth, only by allowing negative weights
one can construct a linear superposition of imperfect models
that is closer to the truth. To test if such a supermodel with
negative weights indeed shows the desired physical behavior
and to test if we can obtain such a model with the synch rule,
we construct a weighted supermodel based on two imperfect
models (models 1 and 6) with parameter values on the same
side of the true parameter values (Table 1).
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Figure 11. CPT weights calculated during a training period of 1 week for 1 year (a) and the weights for the synch rule for a training period
of 1 year (b) with four imperfect models.

Table 5. Weights for the supermodel trained by the synch rule. Be-
tween brackets the standard deviation over the last 10 weeks of
training is given.

Model T VOR DIV

Model 1 1.30 (0.016) 2.00 (0.011) 0.40 (0.010)
Model 2 −0.30 (0.016) −1.00 (0.010) 0.60 (0.009)

Table 6. Global mean average difference with the perfect model,
calculated over the last 30 years of the simulation.

Model Temperature Precipitation Solar Cloud cover
(◦C) (mm d−1) surface (%)

radiation
(W m−2)

Model 1 1.37 0.11 2.06 −1.59
Model 6 3.20 0.26 3.95 −3.37
Supermodel 0.64 0.06 1.68 −1.16

After a training period of 1 year using the synch rule, sta-
ble weights are obtained, which indicates that at least a local
minimum is reached. And as expected, the training produces
negative weights (Table 5). In contrast to the previous experi-
ments, however, the weights for temperature, divergence and
vorticity are quite different. The weights for divergence are
positive and do not substantially differ from the weights of
the previous experiments. The weights for temperature and
vorticity are negative for one of the imperfect models and
larger than 1 for the other such that the sum is again close
to 1.

Stable climate simulations turn out to be possible with a
weighted supermodel using negative weights. The climatol-
ogy of the supermodel has improved significantly compared
to both imperfect models, as displayed in Table 6. Global
mean values of the various fields are closer to the truth,
despite the fact that the global mean climatological errors

of both imperfect models have the same sign. Also, local
model errors largely have the same sign but are smallest for
the supermodel as shown in Fig. 13 for the zonal wind at
200 hPa. Nevertheless, despite the improvement, substantial
errors still remain in the supermodel solution.

The forecast errors are evaluated in a similar fashion as in
the previous cases and shown in Fig. 14. Although there is
a significant improvement in quality for the supermodel as
compared to the imperfect models, the forecast error is still
quite large. Closer correspondence to the truth can only be
expected if all prognostic variables are exchanged, hence also
specific humidity and surface pressure, and if the perturbed
parameters appear linearly in the equations. Both conditions
are not fulfilled in this case.

6.4 Summary of supermodel climate errors

We conclude this section with a summary of the climato-
logical errors of the weighted supermodels of this study and
the connected supermodel of Selten et al. (2017) in Fig. 15.
The climatological errors of the weighted supermodels of
this study based on two imperfect models are of the order
of the sampling error of the perfect model, whereas the con-
nected supermodel based on the same two imperfect mod-
els has substantially larger errors. Also, the weighted super-
model based on the four imperfect models trained by CPT
is indistinguishable from the truth with respect to its clima-
tological errors, whereas the synch-rule-trained weighted su-
permodel has substantially larger errors. These results sug-
gest that CPT training might yield more robust results. The
largest climatological errors remain for the supermodel with
negative weights.
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Figure 12. Global mean time series for the truth, the perfect model, the imperfect models and the two supermodels trained by CPT and
the synch rule. Included is the RMSE of the model years 2011–2040 with respect to the truth. The normalized RMSE in the climatology of
model years 2011–2040 with respect to the climatology of the truth is given in each panel. The normalization is such that the expected value
of the perfect model error is 1.

7 Discussion and conclusions

We have demonstrated the potential of weighted supermod-
eling to improve weather and climate predictions using the
global coupled atmosphere–ocean–land model SPEEDO in
the presence of parametric error. Weighted supermodels are
constructed based on SPEEDO with perturbed parameters.
The perturbations are chosen such that the spread in imper-

fect models reflects the uncertainty in climate models realis-
tically. The weights are trained using data from the perfect
model (i.e., our reference simulated truth) using two differ-
ent training schemes having low computational cost. The first
method is based on CPT, where different model trajectories
are “crossed” in order to create a larger ensemble of possible
trajectories. The second method is a synchronization-based
learning rule (synch rule), which adapts the weights of the
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Figure 13. Difference in the east–west component of the wind at the 200 hPa pressure level averaged over model years 2011–2040 for the
various models with respect to the truth. Contours denote areas where the difference is larger than the sampling error at 95 % confidence
(solid for positive difference; dotted for negative). Positive values imply stronger mean winds blowing eastward. Units: m s−1.

Figure 14. Forecast quality as measured by the RMSE of the truth
and a model with a perturbed initial condition. The control is the
difference between the perfect model and the perfect model with a
perturbed initial condition.

different imperfect models during training such that the su-
permodel synchronizes with the perfect model.

Both training methods yield supermodels that outperform
the individual imperfect models in short-term forecasts as
well as in long-term climate simulations. CPT training re-
quired shorter training periods (1 week as opposed to a year
for the synch rule), but both are much more efficient than

Figure 15. Overview the RMSE of the different supermodels (the
connected supermodel of Selten et al., 2017, and the weighted
supermodels from the experiments of this paper) over the model
years 2011–2040 with respect to the truth.
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cost-function-based approaches that are known to require
many climate simulations in an iterative process to reach
convergence on optimal weights (van den Berge et al., 2011;
Shen et al., 2016). An advantage of the synch rule is that it
allows for negative weights that can potentially improve the
weighted supermodel in the event that model errors do not
compensate for positive weights. In addition, CPT requires
fairly good models such that mixed trajectories are able to
track an observed trajectory for some time. During the synch
rule training, on the other hand, the nudging terms keep the
supermodel in the neighborhood of the observed trajectory
and is therefore more robust (i.e., less sensitive) with respect
to the quality of the imperfect models.

In the application of CPT in this study, we encountered nu-
merical issues due to the partial state replacement. A possible
solution is the use of data assimilation techniques to com-
bine state information from different models in a dynamical
consistent manner (Asch et al., 2016; Carrassi et al., 2018).
One straightforward solution along this line could be based
on the idea of Du and Smith (2017), in which pseudo-orbit
data assimilation is used instead of replacement of the entire
state. Du and Smith (2017) have already used this approach
successfully for low-order dynamical systems. These data as-
similation techniques would also allow application of CPT in
the event that the different models differ in state representa-
tion, for instance, different numerical grids.

The weighted supermodels of this study have smaller cli-
matological errors as compared to the connected supermodel
based on the same two imperfect models in Selten et al.
(2017). Also, in the four-model experiment, the CPT su-
permodel has substantially better climatology than the su-
permodel trained by the synch rule. This suggests that syn-
chronization with the truth can be difficult to obtain, espe-
cially when the imperfect models that form the supermodel
are not fully synchronized in the case of a connected super-
model or when the weighted supermodel consists of several
imperfect models. Although it is a common result in synchro-
nization theory that identical systems will synchronize if the
nudging strength is strong enough and if there are enough
observations from the truth, in practice, this can be a chal-
lenge. The issues with synchronized-based learning can be
easily demonstrated using a low-order dimensional system
(not shown).

In the second supermodel experiment of this paper, the pa-
rameter perturbations of four imperfect models were chosen
such that they formed a so-called convex hull around the true
parameter values. This implies that a linear combination with
positive weights of these four models is able to reproduce
the model equations with the true parameter values, provided
that the parameters appear only linear in the equations. This
is not exactly true in this case, but the trained weighted su-
permodel based on these four models turned out to have a
climatology close to the truth. As all four imperfect models
have a warmer and wetter climatology than the truth, simply
taking the MME mean with positive weights thus does not

improve the climatology. This experiment is a clear exam-
ple of the potential benefit of the supermodeling approach to
ameliorate common model errors. This benefit arises due to
the fact that model errors are compensated at an early stage,
in the time derivative, and not a posteriori, as in the MME ap-
proach where model errors have propagated spatially across
the globe, across scales and across the different meteorolog-
ical fields and other components of the climate system.

In the final supermodel experiment, we have explored the
use of negative weights in order to improve predictions in the
case that model errors do not compensate; i.e., both imperfect
models have parameter perturbations and climatological er-
rors of the same sign. A supermodel trained using the synch
rule yielded negative weights. With these weights, stable and
credible simulations turn out to be possible and forecast er-
rors as well as climatological errors are reduced with respect
to the imperfect models. Substantial errors remain as not all
prognostic equations are combined (only temperature, vor-
ticity and divergence, not humidity and surface pressure) and
the parameters do not appear linearly in the equations.

Although the synch rule training does not impose that the
weights sum to 1, the training inevitably yielded sum of
weights equal to 1. An example based on the Lorenz 1963
equations (Lorenz, 1963) serves to illustrate why this might
be the case. The Lorenz 1963 equations are

ẋ = σ (y− x)
ẏ = x(ρ− z)− y
ż= xy−βz,

where the standard parameter values are σ = 10, ρ = 28 and
β = 8

3 . Assume we have two imperfect models with imper-
fect parameters ρ1 and ρ2. Then, ẏs = w1(x(ρ1− z)− y)+
w2(x(ρ2− z)− y), with “s” denoting the supermodel solu-
tion. We can rewrite this as ẏs = x(w1ρ1+w2ρ2)− (w1+

w2)(xz+ y). To reproduce the standard parameter model so-
lution, two conditions must be satisfied: (w1ρ1+w2ρ2)= ρ
and w1+w2 = 1. Not only should the linear combination of
imperfect parameter values match the true parameter value,
but also the weights have to sum to 1.

The ultimate goal of our research is to apply supermodel-
ing to realistic climate models. But will it work? Based on
the current results, we believe that this is possible, although
the application is not as straightforward as for SPEEDO.
First, state-of-the-art models are far bigger and more com-
plex, making their numerical computation a substantial bur-
den. This makes numerical efficiency a key aspect to con-
sider. Second, the real world is not simply a perturbed param-
eter version of these complex models. In this paper, we have
worked under the hypothesis that model error only originates
by error in the model parameters in the atmosphere. The im-
perfect atmosphere models were coupled to the same ocean
and land model, which constrains the variability on longer
timescales. So far we have demonstrated that the long-term
behavior of the supermodel improves while training only
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short-term prediction errors. It remains to be seen how much
the long-term evolution will improve in the presence of im-
perfections in the slow components of the climate system.
Furthermore, it is essential to extend the approach to other
sources of model error towards the application with real cli-
mate models. In that case, on top of parametric error, model
error can arise from the presence of unresolved scale, numer-
ical discretization or incorrect physics.

Together with the realisms of the models (and of the re-
lated model error), those of the observations are also of cen-
tral importance. In all previous studies with supermodeling,
including the current, observations were assumed to be per-
fect, i.e., to be complete and noise free. To use real data, it
will thus be necessary to study the robustness of the super-
modeling approach to noisy and unevenly distributed obser-
vations and to extend the methods to account for the obser-
vational noise. This latter problem is the subject of ongoing
research of scientists which are making use of ideas and tech-
niques from data assimilation. Data-assimilation-based su-
permodeling is also envisioned to account for generic source
of model error in the construction of the supermodel, and it
will be the subject of future research.
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