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Abstract. According to Kleidon (2016), natural systems evolve towards a state of maximum power, leading
to higher levels of entropy production by different mechanisms, including gravitational circulation in alluvial
estuaries. Gravitational circulation is driven by the potential energy of fresh water. Due to the density difference
between seawater and river water, the water level on the riverside is higher. The hydrostatic forces on both sides
are equal but have different lines of action. This triggers an angular moment, providing rotational kinetic energy
to the system, part of which drives mixing by gravitational circulation, lifting up heavier saline water from the
bottom and pushing down relatively fresh water from the surface against gravity; the remainder is dissipated by
friction while mixing. With a constant freshwater discharge over a tidal cycle, it is assumed that the gravitational
circulation in the estuarine system performs work at maximum power. This rotational flow causes the spread of
salinity inland, which is mathematically represented by the dispersion coefficient. In this paper, a new equation
is derived for the dispersion coefficient related to density-driven mixing, also called gravitational circulation.
Together with the steady-state advection–dispersion equation, this results in a new analytical model for density-
driven salinity intrusion. The simulated longitudinal salinity profiles have been confronted with observations
in a myriad of estuaries worldwide. It shows that the performance is promising in 18 out of 23 estuaries that
have relatively large convergence length. Finally, a predictive equation is presented to estimate the dispersion
coefficient at the downstream boundary. Overall, the maximum power concept has provided a new physically
based alternative for existing empirical descriptions of the dispersion coefficient for gravitational circulation in
alluvial estuaries.

1 Introduction

Estuaries are water bodies in which rivers with fresh water
meet the open sea. The longitudinal salinity difference causes
a water level gradient along the estuary. As a result, the water
level at the limit of salt intrusion is set up several centime-
ters above sea level (about 0.012 times the estuary depth).
Therefore, the hydrostatic forces from the seaside and river-
side have different lines of action (a third of the setup apart).
Since the hydrostatic forces at the seaside and the salinity
limit are equal but opposed, this difference in the lines of
action triggers an angular moment (a torque) that drives the
gravitational circulation, whereby fresh water near the sur-
face flows to the sea and saline water near the bottom moves

upstream (Savenije, 2005). This density-driven gravitational
circulation is one of the two most significant mixing mecha-
nisms in alluvial estuaries; the other is the tide-driven mixing
mechanism that can be dominant in the wider (downstream)
part of estuaries (Fischer et al., 1979).

Kleidon (2016) described the concept of maximum power
in the Earth system, implying that freely evolving systems
perform work and dissipate energy at maximum power (close
to or at the Carnot limit). Using this concept, gravitational
circulation is assumed to take place at the maximum power
limit. Earlier, the maximum power concept was used to solve
saline and fresh water mixing as in a thermodynamic equilib-
rium system (Zhang and Savenije, 2018). It assumed that in
thermodynamic terms, the freshwater flux maintains a poten-
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tial energy gradient, triggering fresh and saline water mix-
ing processes that work at depleting this gradient. Because
the strength of the mixing in turn depends on this gradient,
there is an optimum at which the mixing process performs
at maximum power. It did not, however, account for the en-
ergy loss associated with this mixing process. The equation
obtained appeared to have an analytical solution of a straight
line for the longitudinal salinity distribution. Although this
is not correct, it can be seen as a first order approximation,
which agrees with earlier theoretical work by Hansen and
Rattray (1965), who developed their theory for the central re-
gion of the salt intrusion length at which the salinity gradient
is at its maximum and dominated by density-driven mixing.
However, this approximate solution was not fully satisfactory
for simulating the salinity distribution.

In contrast to the earlier work by Zhang and Savenije
(2018), in this paper friction is taken into account. The avail-
able free energy by the angular moment is converted into
work (mixing the saline and fresh water against the force of
gravity) and the associated frictional dissipation. In the fol-
lowing sections we shall derive a new equation for density-
driven mixing, which appears to compare well with observa-
tions in a range of alluvial estuaries.

Kleidon (2016) presented several examples for the appli-
cation of the maximum power limit on nonthermal energy
conversions. In one example, a fluid is kept in motion by
an accelerating force that provides kinetic energy to the sys-
tem. The velocity of the fluid is slowed down by friction and
the remainder is converted into another form of energy. If
the velocity is too large, the friction is large and energy dis-
sipation dominates, then the power of the force to generate
work is limited. In contrast, if the velocity is too small, the
power is not enough to generate work. Hence, there is an
optimum value for the product of the force and velocity to
produce maximum useful energy. Estuaries are comparable
to this system. In this article, we apply the maximum power
concept to gravitation circulation generated by a longitudinal
density gradient.

Traditionally, the empirical Van der Burgh (VDB) method
has worked very well to describe the mixing in alluvial es-
tuaries, leading to predictive equations to describe the salin-
ity intrusion in alluvial estuaries (Savenije, 2005, 2012). The
VDB method takes account of all mixing mechanisms, in-
cluding density-driven (gravitational) circulation and tide-
driven mixing. For application of the VDB method, there are
two parameters that need to be calibrated, the empirical Van
der Burgh coefficient K and the dispersion coefficient at the
downstream boundary D0. This method has performed sur-
prisingly well around the world and has been used in this
paper as the benchmark model for comparison with the max-
imum power approach.

2 Moment balance for an open estuary system

In an estuary, the cross-sectional average hydrostatic forces
have equal values along the estuary axis. Over a segment,
the forces are opposed but working on different lines of ac-
tion due to the density gradient in the upstream and down-
stream directions. As a result, they exert an angular moment
(torque) Macc that drives the gravitational circulation, per-
forming as accelerating torque. The velocity of the gravita-
tional circulation kept in motion by this accelerating torque is
slowed down by a friction moment Mfric, which is the prod-
uct of the associated friction force and its arm. The remainder
Mex drives the circulation and executes work against gravity
(Fig. 1). Hence, the balance in steady state in a segment is

Macc−Mex−Mfric = 0. (1)

The moment due to the friction against the circulation is ex-
pressed as

Mfric = Ffriclm, (2)

with Ffric being the friction force (N) and lm the scale of the
arm of the frictional forces in meters.

The friction force during the dispersive circulation is ex-
pressed as

Ffric = τO, (3)

where τ is the shear stress (N m−2) and O is the contact area
(m2). Estuarine mixing has two length scales: a vertical and a
horizontal one. The horizontal length scale is the tidal excur-
sion E, which is the distance a water particle travels on the
tide; the vertical length scale is the depth h, over which saline
water is moved upward to the surface and over which rela-
tively fresh water is moved downward to the bottom. Since
the process of gravitational mixing is essentially to move the
saline water up and the fresher water down, the contact area
for the resistance against this movement is determined by the
depth (h) and the width (B). Following that reasoning, O is
assumed equal to Bh. Meanwhile, the circulation cell has a
dimension constrained by the depth. The circular movement
hence has a diameter of the depth and lm, the horizontal arm
between the vertical frictional forces, is of the order of mag-
nitude of the depth.

2.1 Maximum power condition in estuaries

Because the velocity of the dispersive gravitational circu-
lation is small, the mixing flow is assumed to be laminar.
The shear stress is typically a function of flow velocity (v):
τ = ρqv, with ρ being the density (kg m−3) and q being a
laminar resistance (m s−1). The latter is assumed to be pro-
portional to the tidal velocity amplitude (q ∝ E/T ), where T
is the tidal period in seconds. Hence, the flow velocity repre-
senting the gravitational circulation is

v =
Macc−Mex

ρqBh2 . (4)
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Figure 1. (a) Systematic salt transport in estuaries, with the seaside on the left and the riverside on the right. The water level (in blue) has
a slope as a result of the salinity distributions (in red). The hydrostatic forces on both sides have different lines of action that trigger the
gravitational circulation, providing an accelerating moment Macc to the system. (b) A box model displaying the moment balance in open
estuarine systems.

Power is defined by the product of a force and its veloc-
ity. The power of torque (angular moment) is defined as the
product of the moment and its angular velocity. Hence, the
power is defined as

P =Mexω =Mex
v

h/2
2π =

π

ρqBh3 (Macc−Mex)Mex, (5)

where ω is the angular velocity or the rotational speed (s−1).
Figure 2 illustrates how the execution moment and the flow
velocity vary. If the working moment is too large and causes
fast mixing flow, the energy dissipation is large and dimin-
ishes the flow velocity. If it is too small, the mixing would
also be suboptimal. In analogy with Kleidon (2016), the
product of the working moment and the flow velocity has
a well-defined maximum. The maximum power (MP) is then
obtained by ∂P/∂Mex = 0. Hence, the optimum values of the
execution moment Mex,opt and the flow velocity vopt are

Mex,opt =
1
2
Macc (6)

and

vopt =
Macc

2ρqBh2 . (7)

Here, the accelerating force (Facc) that produces the angu-
lar moment is the hydrostatic force obtained by integrating
the hydraulic pressure over the depth:

Facc =
1
2
ρ0gh

2B, (8)

where ρ0 is the density of the seaside (kg m−3).
The accelerating moment has an arm 1h/3 (Savenije,

2005). The water level gradient according to the balance of
the hydrostatic pressures results in

dh
dx
=−

h

2ρ
dρ
dx
, (9)

Figure 2. Sketch of the sensitivity of the exchange flow velocity v
to the working moment Mex.

where x is the distance in meters. Density is a function of
salinity (S; psu): ρ = ρf(1+ cSS), where ρf is the density of
the fresh water (kg m−3) and cS (≈ 7.8× 10−4) is the saline
expansivity (psu−1).

Subsequently, the accelerating moment due to the density
gradient driving gravitational circulation over a tidal cycle
can be described as

Macc = Facc
1
3

dh
dx
E =−

1
12
ρ0gh

3BcS
dS
dx
E, (10)

where E is the horizontal length scale of the gravitational
circulation in meters.

In steady state, the one-dimensional advection–dispersion
equation averaged over the cross section and over a tidal cy-
cle reads (Savenije, 2005, 2012)

|Q|S+AD
dS
dx
= 0, (11)
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where Q is the freshwater discharge (m3 s−1), A (= Bh) is
the cross-sectional area (m2), and D is the dispersion coef-
ficient (m2 s−1). The positive direction of flow is in the up-
stream direction.

Accordingly, with q ∝ E/T , the optimum velocity is

vopt ∝
cSghT

24
|Q|S

AD
. (12)

Assuming that the steady state over a tidal cycle is driven
mainly by the accelerating moment, especially in the up-
stream part where tidal mixing is relatively small and this
gravitational circulation (Dg) is proportional to the disper-
sive residual velocity (Dg ∝ voptE),

Dg ∝

(
cSg

24
S|Q|ET

B

)1/2

. (13)

This equation indicates that the dimensionless disper-
sion coefficient is proportional to the root of the estuarine
Richardson number NR:

Dg

υE
∝NR

0.5
=

(
cSS

gh

υ2
|Q|T

AE

)0.5

, (14)

where υ is the tidal velocity amplitude (m s−1). The
Richardson number describes the balance between the po-
tential energy of the fresh water flowing into the estuary
(1ρgh|Q|T/2) and the kinetic energy of the tidal flood flow
(ρυ2AE/2) (Fischer et al., 1979; Savenije, 2005; Zhang and
Savenije, 2017).

2.2 Analytical solution for the dispersion equation

Equations derived from the maximum power concept are ob-
tained along the estuary axis, and hence they can be used at
any segment along the estuary. Then, Eq. (13) becomes

Dg(x)= C3

(
S|Q|ET

B

)1/2

, (15)

where C3 is a factor (psu−1 m s−1) and all local variables are
a function of x.

The following equations are used for the tidal excursion
and width in alluvial estuaries:

E(x)= E0e
δH (x−x0), (16)

B(x)= B0e
−(x−x0)/b, (17)

where δH is the tidal damping rate (m−1) and b is the geo-
metric convergence length of the width in meters. A smaller b
value implies stronger convergence (a stronger funnel shape).
The subscript “0” represents parameters at the geometric
boundary condition (x = x0).

At the boundary, Eq. (15) is given by

Dg0 = C3

(
S0|Q|E0T

B0

)1/2

. (18)

Substitution of Eqs. (16)–(18) into Eq. (15) gives

Dg(x)=Dg0

(
S

S0

)1/2

e�(x−x0), (19)

with �= δH /2+ 1/(2b).
Differentiating Dg with respect to x and using the steady-

state Eq. (11) results in

dDg

dx
=
Dg

2S
dS
dx
+�Dg =�Dg−

1
2
|Q|

A
. (20)

The cross-sectional area A is given by

A(x)= A0e
−(x−x0)/a, (21)

where a is the convergence length of the cross-sectional area
in meters.

Substituting Eq. (21) into Eq. (20) and in analogy with
Kuijper and Van Rijn (2011) and Zhang and Savenije (2017),
the solution of the linear differential Eq. (20) is

Dg

Dg0
= e�(x−x0)

−
|Q|ζ

2A0Dg0

[
e(x−x0)/a

− e�(x−x0)
]
, (22)

with ζ = a/(1−�a).
At the salinity intrusion limit (x = L),Dg = 0, resulting in

L= ζ ln
(

1+
2A0Dg0

|Q|ζ

)
+ x0. (23)

The solution for the longitudinal salinity distribution
yields

S

S0
=

{
1−

|Q|ζ

2A0Dg0

[
e(x−x0)/ζ

− 1
]}2

. (24)

This solution is comparable to other research. It is similar
to Savenije (2005) if �= 0, although his solutions had an
empirical Van der Burgh coefficient K . In addition, the solu-
tion is the same as Kuijper and Van Rijn (2011) if a equals b,
which implies that the depth is constant along the estuary.

With these new analytical equations, the dispersion and
salinity distribution can be obtained using the boundary con-
ditions (D0 and S0).

3 Empirical validation and discussion

The boundary condition is often taken at the geometric in-
flection point (x = x0) if the estuary has one. The compila-
tion of the Muar estuary in Fig. 3 is an example. Vertical
dashed lines display the inflection point. If there is no in-
flection point such as in the Landak estuary, the boundary
condition is taken at the estuary mouth (x0 = 0). Figure 3
demonstrates that the geometry of the alluvial estuaries fits
well on a semilogarithmic plot, supporting the exponential
functions of the cross section and the width (Eqs. 17 and 21).
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Figure 3. Semilogarithmic presentation of estuary geometry, comparing simulations (lines) to the observations (symbols), including cross-
sectional area (blue diamonds), width (red dots), and depth (green triangles). Vertical lines display the inflection point.

Subsequently, Eq. (24) is used by confronting the solu-
tion with observations using appropriate boundary condi-
tions. Appendix B shows how the new equation based on the
maximum power concept works in 23 estuaries around the
world. The Van der Burgh (VDB) method (Savenije, 2005),
which has been proven to perform well in alluvial estuar-
ies in different parts of the world and includes all mixing
mechanisms, is used for comparison. Density-driven gravi-
tational circulation is one part of the dispersive actions in
estuaries. Hence, the total dispersive process from the Van
der Burgh method (DVDB) must be larger than the gravita-
tional dispersion from the maximum power method (DMP).
The general geometry and measurements follow the database
from Savenije (2012), Gisen (2015), and Zhang and Savenije
(2017). The information on the VDB and MP methods is
summarized in Table 1. Often there is more than one salin-
ity observation in a certain estuary (labeled by alphabet), and
the observation chosen from each estuary with a star-marked
label is represented in Appendix B.

It can be seen that the simulated curves by the new MP
method do not perform well in the wider part of the estuary
(particularly upstream from the inflection point) where tidal
mixing is dominant. However, the salinity observations can
be very well simulated landward from the inflection point
in most estuaries. In the Bernam, the Pangani, the Rembau
Linggi, and the Incomati estuaries, the central part, where
DMP closely approach DVDB, is well represented. In these
estuaries, the calibration is slightly lower than the observa-
tions near the intrusion limit. In general, the dispersion de-
rived with the maximum power method declines upstream
from the inflection point in agreement with the total disper-
sion of the empirical Van der Burgh method, which corre-
sponds to the theory that gravitational circulation is the dom-
inant mixing mechanism in the landward part of these estuar-
ies, especially in the center regime (e.g., Hansen and Rattray,
1965).

However, in the Thames (no. 8), the Delaware (no. 20),
the Scheldt (no. 21), and the Pungwe (no. 22), the new ap-
proach seems not to work for both the salinity and disper-
sion profiles. In these estuaries tide-driven mixing is domi-
nant. Figure 4 shows the relation between the geometry and
the Van der Burgh coefficient K values. It can be seen that
estuaries with poor performances by the MP approach have
lower b/B0 and K values. However, not all estuaries with a
strongly convergent geometry perform poorly, revealing that
the geometry is not the only effect. According to the expres-
sion of �, tidal damping can play a role. In wide estuaries
with strong convergence, the role of gravitational circulation
is insufficient to describe the mixing. Tidal mixing processes
such as lateral circulation, tidal pumping, and tidal shear are
dominant. The Scheldt, with preferential ebb and flood chan-
nels, is a case in point (Nguyen et al., 2008). In addition, the
Corantijn (no. 9) is considered uncertain because it has a low
b/B0 value and contains few observations.

Overall, the maximum power approach in open systems is
a useful tool to understand the mixing processes in most es-
tuaries. In the upstream part where the effect of the tide is
small, gravitational circulation plays the main role. There,
the MP approach yields good results. At the same time,
the predictions upstream are more relevant for water users.
Where the salinity is high, it is less relevant since the water
is already too saline for domestic or agricultural use.

This study provides an approach to define the dispersion
coefficient due to gravitational circulation, which is propor-
tional to the product of the dispersive velocity of the gravita-
tional circulation and the tidal excursion length (which is the
longitudinal mixing length over which one particle travels
during a tidal cycle). The dispersive velocity actually repre-
sents the strength of the density-driven mechanism. Based on
the maximum power method (Eq. 15), the dispersive velocity
can be described as

v ∝

(
S|Q|T

BE

)1/2

. (25)
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Table 1. Summary of application results using two methods.

Estuary Location Label S0
Maximum power Van der Burgh

D0 C3 D0 K

(m2 s−1) (psu−1 m s−2) (m2 s−1) (–)

Kurau Malaysia 1∗ 15 325 0.0064 325 0.4
Perak Malaysia 2∗ 10 225 0.0082 225 0.3
Bernam Malaysia 3∗ 28 213 0.0089 255 0.18
Selangor Malaysia 4∗ 18 275 0.0066 280 0.35
Muar Malaysia 5∗ 19 320 0.0093 330 0.35
Endau Malaysia 6∗ 18 245 0.0059 250 0.45
Maputo Mozambique 7a 29 66 0.0035 68 0.25

7b 32.5 37 0.0043 42 0.2
7c∗ 22 250 0.0069 258 0.3
7d 25 115 0.0046 118 0.25
7e 26 120 0.0055 125 0.23

Thames UK 8∗ 31 98 0.0093 245 0.12
Corantijn Suriname 9a 14 170 0.0114 170 0.3

9b 12 150 0.0100 150 0.25
9c∗ 10 250 0.0141 250 0.3

Sinnamary French Guiana 10a 8 250 0.0063 250 0.35
10b 6.5 220 0.0058 220 0.4
10c∗ 13 310 0.0070 310 0.35

Mae Klong Thailand 11a 24 510 0.0090 520 0.5
11b∗ 26 163 0.0069 165 0.5

Limpopo Mozambique 12a 23 46 0.0044 51 0.5
12b 13 66 0.0056 70 0.5
12c 16 78 0.0056 92 0.55
12d∗ 17.5 58 0.0051 63 0.5

Tha Chin Thailand 13a 23 490 0.0094 490 0.45
13b 25.5 590 0.0087 600 0.45
13c∗ 16.5 435 0.0099 440 0.48

Chao Phraya Thailand 14a 11 295 0.0051 305 0.5
14b 1 160 0.0071 165 0.43
14c∗ 8.5 430 0.0076 430 0.45
14d 12 495 0.0066 510 0.5

Elbe Germany 15a 10 145 0.0055 150 0.35
15b∗ 10 158 0.0063 160 0.3

Shatt al-Arab Iraq 16a 11.5 280 0.0088 280 0.45
16b 16 340 0.0099 340 0.45
16c 27 400 0.0092 400 0.48
16d∗ 15.5 235 0.0086 235 0.5

Pangani Tanzania 17a∗ 28.5 212 0.0070 243 0.38
17b 28 130 0.0054 145 0.38

Rembau Linggi Malaysia 18∗ 28 292 0.0090 310 0.3
Landak Indonesia 19∗ 9 90 0.0040 93 0.45
Delaware USA 20a 11 95 0.0269 200 0.12

20b∗ 32 51 0.0103 100 0.13
Scheldt the Netherlands 21a 31 88 0.0097 225 0.12

21b∗ 33 278 0.0173 800 0.12
Pungwe Mozambique 22a∗ 21.5 330 0.0124 350 0.1

22b 20 415 0.0165 500 0.1
Incomati Mozambique 23a∗ 25 39 0.0058 39 0.4

23b 17 46 0.0052 46 0.38
23c 16 50 0.0056 50 0.42

∗ Note: the observation chosen from each estuary is represented in Appendix B.
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Figure 4. Comparison of the geometry to the Van der Burgh coef-
ficient. Numbers show the labels of the estuaries.

Hence, the dispersive flow due to gravitational circulation
strengthens with larger freshwater discharge |Q| (more strat-
ification) and weakens with stronger tide E (less stratifica-
tion).

Using the calibrated dispersion coefficient at the inflection
point, C3 can be calculated. Except in estuaries with poor
performance,C3 values range from 3.5×10−3 to 10.0×10−3

with an average of 6.8× 10−3 (the relative standard devia-
tion equals 0.26). Using the average C3 value to predict Dg0
(Eq. 18), Fig. 5 shows how the predictive equation performs.
It reveals that almost all the data fall within a factor of 2,
and the maximum power method underestimates the disper-
sion coefficient in estuaries with low b/B0 values (in red) in
which gravitational circulation is not enough to describe the
total dispersive processes. Finally, the R2 value of the regres-
sion in Fig. 5 equals 0.86. Considering all the uncertainties
in the measurement, C3 equalling 6.8× 10−3 is a promising
approximation to predict Dg0.

Finally, there is uncertainty about the timescale of reach-
ing this optimum. If this timescale is longer than the tidal
period, then such an optimum is not reached. In a low-flow
situation, however, which is the critical circumstance for salt
intrusion, the variation of the river discharge is slow (follow-
ing an exponential recession). If the timescale of flow reces-
sion is large compared to the timescale of salinity intrusion
then it is reasonable to assume that the maximum power op-
timum is approached.

4 Combination of the MP and VDB methods

The fact that the MP method works well for density-driven
mixing but not for tide-driven mixing, whereas the VDB
method works well for the combination of the two, offers an
excellent opportunity for the combination of the two meth-

Figure 5. Comparison of calibrated and predicted Dg0 values by
using C3 = 6.8× 10−3. Labels in red, indicating that the estuaries
have relatively poor performance, are presented for validation.

ods. The VDB method requires two parameters: the K of
Van der Burgh and the dispersion coefficient at the down-
stream boundary D0, while the MP method only requires the
downstream boundary condition Dg0. The dispersion of the
VDB method, which deals with all mixing processes, should
therefore always be larger than the dispersion determined by
the MP method. Hence, the MP method can be used to im-
pose an additional constraint on the calibration of the VDB
method, which reduces the potential equifinality between K
and D0. Appendix B shows the result of this mixed calibra-
tion approach: the dispersion of the VDB method is always
higher than the dispersion of the MP method, and the result-
ing fit by the VDB method is quite acceptable.

This combined approach also allowed for more accurate
predictive equations as derived before. The correlation be-
tween K and the estuary geometry is strong, as shown in
Fig. 4. This relation can be used as a predictive equation for
K . Also, the predictive equation for Dg0 is powerful, as can
be seen in Fig. 5, except for very wide estuaries where cali-
bration remains necessary and where this predictive equation
can be used as a 1st-order estimate for D0.

5 Conclusions

An estuary is an open system that has a maximum power
limit when the accelerating source is stable. This study has
described a moment balance approach to nonthermal sys-
tems, yielding a new Eq. (15) for the dispersion coefficient
due to the density-driven gravitational circulation. It shows
that the dispersive action is closely related to the salinity,
the freshwater discharge, the tide, and the estuarine width.
This equation has been used to solve the tidal average salin-
ity and dispersion distributions together with the steady-state
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Eq. (11). The maximum power model has then been vali-
dated with 50 salinity observations in 23 estuaries worldwide
and compared with the Van der Burgh method. Generally, the
new equation is a helpful tool to analyze the salinity distribu-
tion in alluvial estuaries, providing an alternative solution for
the empirical Van der Burgh method in estuaries where grav-
itational circulation is the dominant mixing mechanism. A
predictive equation for dispersion at the geometric boundary
has also been provided.

As can be seen in Appendix B, the gravitational dispersion
is always smaller than the total effective dispersion obtained
by the Van der Burgh method. In all estuaries that have a
wide mouth, we see substantial tide-driven dispersion, most
probably as a result of interacting preferential ebb and flood
channels. This tide-driven mechanism is responsible for the
(sometimes pronounced) concave slope of the salinity curve
near the mouth. In the middle reach where the salinity gra-
dient is steepest, density-driven dispersion is dominant and
equals the total effective dispersion. Further upstream, where
the salinity gradient gradually tends to zero and the estuary
becomes narrower, we see the tide-driven circulation again
becoming more prominent. This is in the part of the estu-
ary where the width-to-depth ratio becomes smaller and the
bank shear results in more pronounced lateral velocity gradi-
ents and hence more pronounced lateral circulation. The tide-
driven mixing mechanism is particularly strong in macro-
tidal estuaries such as the Thames, the Scheldt, the Pungwe,
and the Delaware.

This study is a further development of the paper by Zhang
and Savenije (2018), which also considered gravitational cir-
culation based on the maximum power concept but which
did not consider the associated frictional dissipation. The ap-
proach followed in this paper maximizes the work performed
by the driving gravitational torque to mix the fresh and saline
water, taking account of the energy dissipation associated
with this mixing. As a result, we found a solution that com-
bines well with the empirical Van der Burgh method, provid-
ing an additional constraint for its calibration. Because the
total mixing of the Van der Burgh method (DVDB) should be
larger than the gravitational mixing of the maximum power
concept (DMP), the calibration of the Van der Burgh method
is more constrained. As a result, the Van der Burgh K and
the dispersion at the boundary D0 can be correlated with
physically observable parameters through analytical equa-
tions, which makes the Van der Burgh method a more pow-
erful predictive model that can be applied to alluvial estuar-
ies worldwide. More reliable observations in other estuaries
are suggested to validate these maximum power and Van der
Burgh methods.

Data availability. About the data, all observations are available on
the website at http://salinityandtides.com/ (Savenije, 2012).
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Appendix A: Notation

Table A1. Notations for symbols used in this study.

Symbol Meaning Dimension Symbol Meaning Dimension

a cross-sectional convergence length (L) M moment (ML2T−2)
A cross-sectional area (L2) NR estuarine Richardson number (–)
b width convergence length (L) O contact area (L2)
B width (L) P power (ML2T−3)
cS saline expansivity (psu−1) q laminar resistance (LT−1)
D dispersion coefficient (L2T−1) Q freshwater discharge (L3T−1)
Dg dispersion due to gravitational circulation (L2T−1) S salinity (psu)
E tidal excursion length (L) T tidal period (T)
F force (MLT−2) v velocity of dispersive movement (LT−1)
g gravity acceleration (LT−2) δH damping–amplifying rate (L−1)
h depth (L) ρ density of water (ML−3)
K Van der Burgh’s coefficient (–) τ shear stress (ML−1T−2)
lm arm of the frictional forces (L) υ tidal velocity amplitude (LT−1)
L intrusion length (L)
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Appendix B: Application of the maximum power
method

This Appendix represents the application in 23 estuaries
around the world of the maximum power method for deter-
mining the dispersion coefficient and the salinity distribution
using Eqs. (22) and (24), compared to salinity observations.
The empirical Van der Burgh method is included as a refer-
ence.

Figure B1.
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Figure B1.
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Figure B1.
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Figure B1. Left: Application of the analytical solution from the maximum power method (solid lines) to observations (symbols) for high
water slack (HWS, in red) and low water slack (LWS, in blue). The green line shows the tidal average (TA) condition. Dash dot lines reflect
applications of the Van der Burgh method. Vertical dash lines display the inflection point. Right: Simulated dispersion coefficient using
different methods.
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