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Abstract. This study presents a multi-scale analysis of cross-correlations based on Haar fluctuations of glob-
ally averaged anomalies of precipitation (P ), precipitable water vapor (PWV), surface temperature (T ), and
atmospheric radiative fluxes. The results revealed an emergent transition between weak correlations at sub-
yearly timescales (down to ∼ 5 days) to strong correlations at timescales larger than about ∼ 1–2 years
(up to ∼ 1 decade). At multiyear timescales, (i) Clausius–Clapeyron becomes the dominant control of PWV
(ρPWV,T ≈ 0.9), (ii) surface temperature averaged over global land and over global ocean (sea surface tem-
perature, SST) become strongly correlated (ρTland,SST ∼ 0.6); (iii) globally averaged precipitation variability
is dominated by energetic constraints, specifically the surface downwelling longwave radiative flux (DLR)
(ρP,DLR ≈−0.8) displayed stronger correlations than the direct response to T fluctuations, and (iv) cloud ef-
fects are negligible for the energetic constraints in (iii), which are dominated by clear-sky DLR. At sub-yearly
timescales, all correlations underlying these four results decrease abruptly towards negligible values. Such a
transition has important implications for understanding and quantifying the climate sensitivity of the global
hydrological cycle. The validity of the derived correlation structure is demonstrated by reconstructing global
precipitation time series at 2-year resolution, relying on the emergent strong correlations (P vs. clear-sky DLR).
Such a simple linear sensitivity model was able to reproduce observed P anomaly time series with similar accu-
racy to an (uncoupled) atmospheric model (ERA-20CM) and two climate reanalysis (ERA-20C and 20CR). The
linear sensitivity breaks down at sub-yearly timescales, whereby the underlying correlations become negligi-
ble. Finally, the relevance of the multi-scale framework and its potential for stochastic downscaling applications
are demonstrated by deriving accurate monthly P probability density functions (PDFs) from the reconstructed 2-
year P time series based on scale-invariant arguments alone. The derived monthly PDFs outperform the statistics
simulated by ERA-20C, 20CR, and ERA-20CM in reproducing observations.

1 Introduction

The precipitation response to changes in increased concen-
trations of greenhouse gases is a central topic for the cli-
mate science community. Although its regional variability
is essential to determining societal impacts, globally aver-
aged precipitation is an important first-order climate indica-
tor, and a measure of the global water cycle, that must be
accurately simulated if robust climate projections are to be
obtained across a wide range of spatial and temporal scales.

However, even the long-term response of globally aver-
aged precipitation is still poorly understood, constrained, and

simulated (Collins et al., 2013; Allan et al., 2014; Hegerl et
al., 2015), largely due to limited knowledge on the complex
interactions between the key components of the atmospheric
branch of the water cycle and its forcing mechanisms. This
problem is tackled here by employing a multi-scale analy-
sis framework to study globally averaged precipitation vari-
ability and its relation to two key governing mechanisms: the
Clausius–Clapeyron relationship and the constraints imposed
by the atmospheric energy balance.

The Clausius–Clapeyron relationship is a well-known
mechanism controlling the variability of the global water
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cycle. Assuming constant relative humidity, it implies that
fractional changes in globally averaged precipitable wa-
ter vapor (1PWV /PWV) are linearly related to fluctua-
tions of globally averaged near-surface air temperature (1T )
(e.g., Held and Soden, 2006; Schneider et al., 2010):

1PWV
PWV

≈ αPWV,T1T, (1)

where αPWV,T ≈ 0.07 K−1 at temperatures typical of the
lower troposphere. Numerous studies have provided a ro-
bust confirmation for the Clausius–Clapeyron mechanism at
multi-decadal to centennial timescales, while also reporting
an analogous linear response of globally averaged precipita-
tion to surface temperature fluctuations (see, e.g., Schneider
et al., 2010; Trenberth, 2011; O’Gorman et al., 2012; and
Allan et al., 2014 for reviews). In general, these previous in-
vestigations agree on the ∼ 7 % K−1 sensitivity coefficient
for precipitable water vapor. However, there is large spread
of the global precipitation sensitivity coefficient estimates,
typically in the 1 % K−1 to 3 % K−1 range.

A widely recognized explanation for the sub-Clausius–
Clapeyron sensitivity of precipitation to temperature fluctu-
ations at long temporal scales comes from the atmospheric
energy balance (Allen and Ingram, 2002; Stephens and Ellis,
2008; Stephens and Hu, 2010). Specifically, averaging over
the global atmosphere, the latent heat flux associated with
precipitation formation (LVP , with P being the globally av-
eraged precipitation flux and LV the latent heat of vaporiza-
tion) should be in balance with the net atmospheric radiative
flux (Ratm) and the surface sensible flux (FSH):

LVP +Ratm+FSH ≈ 0. (2)

Equation (2) represents a general state of radiative convective
equilibrium (Pauluis and Held, 2002), with energy fluxes de-
fined as positive for atmospheric gain and negative otherwise.

If the Clausius–Clapeyron relationship was the dominant
mechanism controlling the response of atmospheric moisture
content and the global water cycle to temperature fluctua-
tions, then globally averaged precipitable water vapor and
precipitation could be expected to be strongly correlated
with surface temperature. Previously, Gu and Adler (2011,
2012) found strong correlations between the interannual vari-
ability of globally averaged precipitable water vapor and
surface temperature, in tight agreement with the Clausius–
Clapeyron mechanism. However, they found weaker (yet sig-
nificant) correlations between the interannual variability of
globally averaged precipitation and surface temperature, rais-
ing doubts regarding whether the Clausius–Clapeyron mech-
anism could be directly extendable to global precipitation.
Note, however, that these results focusing on a single tempo-
ral scale might not represent the entire picture.

A further source of complexity comes from the fact that
precipitation and other relevant atmospheric variables (in-
cluding temperature, atmospheric moisture, wind, etc.) dis-

play a complex statistical structure, with significant variabil-
ity over a wide range of temporal scales and with the possibil-
ity of different mechanisms governing variability at different
timescales (see, e.g., Lovejoy and Schertzer, 2013 for a com-
prehensive review). Furthermore, it has been shown that this
complex multi-scale structure plays a role (at least) as impor-
tant as the large amplitude periodic components, namely di-
urnal and seasonal cycles (Lovejoy, 2015; Nogueira, 2017a).
However, our understanding of the underlying governing
mechanisms at different timescales remains largely elusive,
representing a central problem for future improvements to
climate simulation and projection.

Recently, Nogueira (2019) analyzed satellite-based obser-
vational datasets, a long global climate model (GCM) sim-
ulation, and reanalysis products and found a tight corre-
lation (∼ 0.8) between anomaly (deseasonalized) time se-
ries of globally averaged precipitable water vapor and sur-
face temperature, which emerged at timescales larger than
∼ 1–2 years. In contrast, at smaller timescales the corre-
lation decreased rapidly towards negligible values (< 0.3).
In other words, the Clausius–Clapeyron relationship is the
dominant mechanism of atmospheric moisture anomalies
at multiyear timescales, but not at sub-yearly timescales.
Nogueira (2019) also found that the magnitude of the cor-
relations between anomaly time series for globally averaged
precipitation and surface temperature was negligible at sub-
yearly timescales, while at multiyear timescales the results
showed large spread amongst different datasets, ranging be-
tween negligible (< 0.3) and strong (∼ 0.8) correlation val-
ues. Building on this previous study, here the multi-scale
analysis of the mechanisms governing global precipitation
variability was extended, including the energetic constraints
on precipitation represented in Eq. (2). The paper is orga-
nized as follows: Sect. 2 describes the considered datasets
and the multi-scale analysis framework; the results of multi-
scale correlation analysis of precipitation variability are pre-
sented and discussed in Sect. 3; and in Sect. 4 the validity
of the linear sensitivity correlations derived from the multi-
scale analysis is demonstrated by employing a simple lin-
ear model to reconstruct globally averaged precipitation time
series from energetic constraints. At sub-yearly timescales,
at which the correlations break down, it is shown in Sect. 5
how the monthly statistics can be reproduced by employing
a stochastic downscaling algorithm based on scale-invariant
symmetries of precipitation. Finally, the main conclusions
are summarized and discussed in Sect. 6.

2 Data and methodology

2.1 Datasets

Precipitation observations were obtained from the Global
Precipitation Climatology Project (GPCP) version 2.3
monthly precipitation dataset (Adler et al., 2003), which cov-
ers the full globe at 2.5◦ resolution from 1979 to present.
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Gridded datasets of monthly average surface temperatures
were obtained from the Goddard Institute for Space Stud-
ies (GISSTEMP) analysis (Hansen et al., 2010), which cov-
ers the globe at 2◦ resolution from 1880 to present, with the
values provided as anomalies relative to the 1951–1980 ref-
erence period. GISSTEMP blends near-surface air temper-
ature measurements from meteorological stations (includ-
ing Antarctic stations) with a reconstructed sea surface tem-
perature (SST) dataset over oceans. Observations of atmo-
spheric radiative fluxes were obtained from the National
Aeronautics and Space Administration (NASA) Clouds and
the Earth’s Radiant Energy System, Energy Balanced and
Filled (CERES-EBAF) edition 4.0 (Loeb et al., 2009), a
monthly dataset covering the full globe at 1◦ resolution from
March 2000 to June 2017.

Two state-of-the-art reanalyses of the twentieth century
were considered in the present study. One was the Na-
tional Oceanic and Atmospheric Administration Cooperative
institute for Research in Environmental Sciences (NOAA-
CIRES) twentieth-century reanalysis (20CR) version 2c
(Compo et al., 2011), which covers the full globe at 2◦ resolu-
tion, spanning from 1851 to 2014. Only surface pressure ob-
servations and reports are assimilated in this reanalysis. SST
boundary conditions are obtained from 18 members of Sim-
ple Ocean Data Assimilation with Sparse Input (SODAsi)
version 2, with the high latitudes corrected to the Centen-
nial in Situ Observation-Based Estimates of the Variability of
SST and Marine Meteorological Variables version 2 (COBE-
SST2). Here, global-mean time series of precipitation, pre-
cipitable water vapor, near-surface temperature, SST, and at-
mospheric radiative fluxes were obtained from 20CR at daily
resolution for the 1900–2010 period. Note that the net atmo-
spheric radiative flux cannot be obtained from 20CR because
the incoming solar radiation at the top of the atmosphere is
not available for this dataset due to an error with output pro-
cessing.

The other reanalysis considered in the present study was
the European Centre for Medium-Range Weather Fore-
casts (ECMWF) twentieth-century reanalysis (ERA-20C;
Poli et al., 2015), which covers the full globe at 1◦ res-
olution spanning 1900–2010. It assimilates marine sur-
face winds from the International Comprehensive Ocean–
Atmosphere Data Set version 2.5.1 (ICOADSv2.5.1) and
surface and mean sea-level pressure from the International
Surface Pressure Databank version 3.2.6 (ISPDv3.2.6) and
from ICOADSv2.5.1. SST boundary conditions are obtained
from the Hadley Centre Sea Ice and Sea Surface Tempera-
ture dataset version 2.1 (HadISST2.1). Global-mean time se-
ries of precipitation, precipitable water vapor, near-surface
temperature, SST, and atmospheric radiative fluxes were
obtained from ERA-20C at daily resolution for the 1900–
2010 period.

Finally, the uncoupled ECMWF twentieth-century en-
semble of 10 atmospheric model integrations (ERA-20CM;
Hersbach et al., 2015) was considered, which uses the same

model, grid, initial conditions, and radiative and aerosol forc-
ings as ERA-20C. However, no observations are assimilated,
the simulation is integrated continuously over the full 1900–
2010 period, and SST is prescribed by an ensemble of real-
izations from HadISST2.1, including one control simulation
and nine simulations with perturbed SST and sea ice con-
centration. A 10-member ensemble of global-mean time se-
ries of precipitation, precipitable water vapor, near-surface
temperature, SST, and atmospheric radiative fluxes was ob-
tained from ERA-20CM at monthly resolution for the 1900–
2010 period. Considering ERA-20CM allowed for the testing
of the sensitivity of the multi-scale correlation structure de-
rived from ERA-20C to data assimilation, but different atmo-
spheric evolutions associated with perturbations to the forc-
ing fields (particularly to SST).

Note that the clear-sky radiative fluxes considered here ob-
tained from ECMWF datasets are computed for the same at-
mospheric conditions of temperature, humidity, ozone, trace
gases, and aerosol, but assuming that the clouds are not there.
Clear-sky estimates from ERA-20C and ERA-20CM cover
the full globe area and not just the cloud-free regions at each
time instant. However, they are available for net radiative
fluxes, but not for downwelling or upwelling radiation fluxes.

2.2 Multi-scale correlation analysis

Consider two time series, y and y′, with N data points each.
Here the goal is to study the correlation between the fluctua-
tions 1y(1t) and 1y(1t) at different timescales 1t . Due to
the strong yearly cycle present in the considered time series,
the periodic seasonal trend was first eliminated by subtract-
ing the long-term average (over all the years in the record) of
each calendar day (or month, depending on temporal resolu-
tion):

yds(i)= y(i)−〈y〉d, (3)

where yds is the deseasonalized anomalies time series.
Traditionally, fluctuations are defined by the difference

1y(1t)= y(t+1t)−y(t). However, it has been shown that
such definition is only appropriate for fluctuations increasing
with timescale (Lovejoy and Schertzer, 2013). Consequently,
the traditional a definition is not useful for the present
study, since the fluctuations for most atmospheric variable
time series (including temperature, rain, wind, and water
vapor, amongst others) decrease with increasing timescale
over the tens of days to tens of years range (e.g., Lovejoy
and Schertzer, 2013; Lovejoy, 2015; Lovejoy et al., 2017;
Nogueira, 2017a, b, 2019). In this sense, here the fluctua-
tions were defined using the Haar wavelet, which is appropri-
ate for the full range of timescales and all atmospheric vari-
ables considered, in cases in which fluctuations both increase
and decrease with timescale. Furthermore, correlations com-
puted from Haar fluctuation time series also avoid the low-
frequency biases that emerge in standard correlation analysis
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due to climate variability (see Lovejoy et al., 2017, for a de-
tailed description of the Haar fluctuations and correlations of
Haar fluctuations).

The Haar fluctuations are simply defined as the difference
of the means from t+1t/2 to t+1t/2 and from t to t+1t/2,
i.e.,

(1y(1t))Haar =
2
1t

t+1t∫
t+1t/2

y(t)dt −
2
1t

t+1t/2∫
t

y(t)dt. (4)

For the sake of simplicity, henceforth the fluctuation nota-
tion 1y(1t) will be employed to refer to Haar fluctuations
(i.e., 1y(1t)≡ (1y(1t))Haar). A Haar fluctuation time se-
ries was computed by employing Eq. (4) at each instant of the
deseasonalized anomaly time series for each variable consid-
ered. Finally, at each timescale, 1t , the correlation coeffi-
cient, ρ, of the corresponding Haar fluctuations time series
was computed for each pair of variables considered.

Note that, in computing correlations at timescales larger
than 2 times the original time series resolution, there is over-
lap of the data points considered in computing the Haar fluc-
tuations. While this could introduce spurious effects in the
computed correlations, previous works have shown the ro-
bustness of the Haar-fluctuation-based correlation method-
ology used here (e.g., Lovejoy et al., 2017). Additionally,
the analogous method of detrended cross-correlation analysis
has also been employed on overlapping windows and demon-
strated to provide accurate correlation estimates at different
timescales using overlapping windows (see, e.g., Podobnik
and Stanley, 2008; Podobnik et al., 2011; Piao and Fu, 2016).
In fact, in Sect. 3 below it is shown that identical correlation
structures are obtained between correlations of Haar fluc-
tuations and detrended cross-correlation analysis. Since the
multi-scale cross-correlation structure obtained with Haar
fluctuations is identical to the results using detrended cross-
correlation analysis, it is assumed that critical points for the
95 % significance level of Haar fluctuation correlations are
identical to the ones demonstrated by Podobnik et al. (2011)
for detrended cross-correlation analysis using overlapping
windows, whereby the significant values can vary between
values below 0.1 and up to about 0.4, depending on the time
series length, the considered timescale, and the power-law
exponents of both time series. In this sense, here it is assumed
that correlation magnitudes below 0.3 are nonsignificant and
that magnitudes in the 0.3 to 0.4 range should be interpreted
with care.

3 Analysis of the mechanisms governing
P variability across timescales

3.1 Multi-scale structure of the atmospheric water cycle
response to surface temperature fluctuations

The correlations between Haar fluctuation time series re-
vealed strong correlations (∼ 0.9) between deseasonalized

anomaly time series for globally averaged precipitable wa-
ter vapor and near-surface temperature (or, alternatively,
SST) at multiyear timescales (Fig. 1a). However, as the
timescale decreases there is a transition in the correlation
structure, and negligible correlations (< 0.3) emerge at sub-
yearly timescales. This result suggested that the Clausius–
Clapeyron relationship (see Eq. 1) holds to a very good ap-
proximation at multiyear timescales, but not at sub-yearly
timescales. Interestingly, Lovejoy et al. (2017) computed the
Haar fluctuation correlations for GISSTEMP surface tem-
peratures and found a similar transition in the multi-scale
correlation structure of SST against globally averaged sur-
face temperature, with low correlations at timescales be-
low a few months and strong correlations (∼ 0.8) at mul-
tiyear timescales. Note that the latter strong correlations
were not surprising, since SST was a major component
in their definition of globally averaged surface temperature
(which for GISSTEMP uses SST over ocean pixels and 2 m
air temperature over land pixels). Nonetheless, Lovejoy et
al. (2017) also found a similar transition for the correlation
between SST and near-surface air temperature averaged over
global land, with maximum correlation values ∼ 0.6 at mul-
tiyear timescales. The transition in the correlation structure
between SST and global land temperature was confirmed
here for ERA-20C, ERA-20CM, 20CR, and GISSTEMP
(Fig. 1b). Thus, the present results support the Lovejoy et
al. (2017) argument that these abrupt correlation changes
correspond to a fundamental behavioral transition, whereby
the atmosphere and the oceans start to act as a single cou-
pled system. Furthermore, the results presented here suggest
that precipitable water vapor anomalies at multiyear resolu-
tion can be derived, to a very good approximation, from SST
alone.

Nogueira (2019) also reported a transition in the multi-
scale correlation structure between deseasonalized anomaly
time series of globally averaged precipitation and surface
temperature (considering SST over the oceans and 2 m air
temperature over land), with negligible values at sub-yearly
timescales, but with large spread in the magnitude of the mul-
tiyear correlations ranging between ∼ 0.3 and ∼ 0.8. Here,
a similar result was found for the multi-scale correlation
structure between globally averaged precipitation and sur-
face temperature and also globally averaged precipitation
and SST (Fig. 1c), with large spread in correlation magni-
tude at multiyear timescales (∼ 0.7 in ERA-20C and ERA-
20CM, ∼ 0.6 in 20CR, and ∼ 0.4 in observations). Further-
more, considering different time lags in computing the cross-
correlations between precipitation and surface temperature
did not reveal the presence of significant lagged correlations
over the daily to decadal timescale range.
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Figure 1. Cross-correlation coefficients against temporal scale
computed from Haar fluctuations for global-mean time series of
(a) PWV vs. T2 m (solid) and PWV vs. SST (dashed); (b) SST
vs. Tland; and (c) LvP vs. T2 m (solid) and LvP vs. SST (dashed).
Red lines represent results from ERA-20C, blue lines are from
ERA-20CM, pink lines are from 20CR, and black lines are esti-
mated from observational products.

3.2 Multi-scale structure of the energetic constraints to
precipitation variability

A study of the circulation component of the precipitation re-
sponse to temperature fluctuations requires a detailed rep-
resentation of several spatially heterogeneous variables and
their nonlinear interactions. An alternative path towards un-
derstanding globally averaged precipitation temporal vari-
ability was taken in the present investigation, focusing on
the constraints imposed by the atmospheric energy balance

represented in Eq. (2). Figure 2a (solid lines) shows that the
estimated multi-scale correlation coefficients between the de-
seasonalized anomaly time series for precipitation and net at-
mospheric radiative fluxes were strongly (negatively) corre-
lated at multiyear timescales (|ρ| = 0.8 in ERA-20C, ERA-
20CM, and observations), in agreement with the balance in
Eq. (2). In contrast, at sub-yearly timescales the correlation
magnitude decreased rapidly, changed sign around monthly
timescales, and reached values ∼ 0.4 at timescales below
about 10 days.

Considering the combined effect of the net atmospheric
radiative fluxes and sensible heat flux in Eq. (2) slightly in-
creased the (positive) correlations at sub-monthly timescales
(Fig. 2a, dashed lines), although the absolute changes are es-
sentially below 0.1. More importantly, Fig. 2a shows that the
magnitude of the correlation at multiyear timescales between
globally averaged precipitation and net atmospheric radiative
fluxes is significantly larger than when the combined effect
of net atmospheric radiative fluxes and sensible heat flux was
considered. Indeed, the correlation between globally aver-
aged precipitation and sensible heat flux displayed values up
to about 0.5 at sub-monthly timescales, but essentially < 0.4
at multiyear timescales (Fig. 2a, dot-dashed lines). Given the
results in Fig. 2a, the following linear relation was hypoth-
esized: LV1P ≈ c1× (−1Ratm)+ c2, where c1 and c2 are
arbitrary constants, and 1 represents fluctuations taken as
deseasonalized anomalies at multiyear resolutions. At sub-
yearly timescales this simplification is not adequate, since
the correlations between globally averaged precipitation and
net atmospheric radiative fluxes become negligible. In other
words, the energy balance represented in Eq. (2) does not
represent the dominant constraint on precipitation variability
at sub-yearly timescales, most likely due to non-negligible
changes in atmospheric heat storage.

The analysis was extended by decomposing the net atmo-
spheric radiative flux into its net atmospheric longwave and
shortwave radiative flux components, i.e., Ratm = RLW,net+

RSW,net. On the one hand, the correlation between globally
averaged precipitation and net atmospheric radiative fluxes is
nearly identical to the correlation between globally averaged
precipitation and net atmospheric longwave radiative fluxes
(i.e., ρP,Ratm ≈ ρP,RLW,net ) over the full range of timescales
considered (Fig. 2b). On the other hand, ρP,RSW,net also dis-
played significant values (∼ 0.6) at multiyear timescales, but
the latter magnitude was nearly 0.2 lower when compared to
ρP,Ratm and ρP,RLW,net (Fig. 2b). Consequently, the above lin-
ear relationship for multi-scale P anomalies was further re-
fined as LV1P ≈ c1×(−1Ratm)+c2 ≈ c3×(−1RLW,net)+
c4, where c3 and c4 are arbitrary constants.

Subsequently, the net atmospheric longwave radiative flux
was further decomposed into the top-of-atmosphere (TOA)
and surface net longwave fluxes, i.e., RLW,net = RLW,TOA+

RLW,SFC. At multiyear timescales, ρP,Ratm ≈ ρP,RLW,SFC

(Fig. 2c), suggesting that the surface net longwave radiative
fluxes provide the main constraint to globally averaged pre-
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Figure 2. Cross-correlation coefficients against temporal scale computed from Haar fluctuations of (a)LvP vs.Ratm (solid),LvP vs. (Ratm+
FSH) (dashed), and LvP vs. FSH (dot-dashed); (b) LvP vs. Ratm (solid), LvP vs. RLW,net (dashed), and LvP vs. RSW,net (dot-dashed);
(c) LvP vs. Ratm (solid), LvP vs. RLW,SFC (dashed), and LvP vs. RLW,TOA (dot-dashed); and (d) LvP vs. Ratm (solid), LvP vs. DLR
(dashed), and LvP vs. RLW,SFC,UP (dot-dashed). Red lines are computed from ERA-20C, blue lines are from ERA-20CM, pink lines are
from 20CR, and black lines are computed from GPCP and CERES-EBAF observational products. Note that Ratm and RSW,net were not
available from 20CR, while sensible heat flux was not available from observations.

cipitation variability. The correlation between globally aver-
aged precipitation and TOA longwave radiative fluxes also
displayed significant values at multiyear timescales, up to ∼
−0.6 in ERA-20C and ERA-20CM datasets, but much lower
in 20CR in which the magnitude of the correlation was< 0.4
at multiyear timescales. Nonetheless, the former correla-
tions (in ERA-20C and ERA-20CM) were in better agree-
ment with observations, suggesting that significant (nega-
tive) correlations existed between globally averaged precip-
itation and net longwave fluxes for TOA anomalies at mul-
tiyear timescales. However, for all datasets, the magnitude
of ρP,RLW,TOA at multiyear timescales was nearly 0.2 lower
than for ρP,RLW,SFC . Consequently, a further approximation
was considered on the linear model for precipitation fluc-
tuations at multiyear timescales: LV1P ≈ c1× (−1Ratm)+
c2 ≈ c3× (−1RLW,net)+ c4 ≈ c5× (−1RLW,SFC)+ c6.

Finally, the surface net longwave radiative flux can be fur-
ther decomposed into its upwelling and downwelling (hence-
forth denoted downwelling longwave radiation, DLR) com-
ponents. Figure 2d shows that, at multiyear timescales, the
differences in the correlations of globally averaged precip-
itation against DLR (ρP,DLR) or against net atmospheric
radiative fluxes (i.e., ρP,Ratm ) were within 0.1 in observa-

tions, ERA-20C, and ERA-20CM (Ratm is unavailable for
20CR). Thus, at multiyear timescales, the fluctuations in
downwelling surface longwave radiative fluxes are, to a good
approximation, linearly related to precipitation fluctuations:
LV1P ≈ c7×(−1DLR)+c8. Note that the correlation struc-
ture of globally averaged precipitation against upwelling sur-
face radiative fluxes or against net atmospheric radiative
fluxes is nearly identical in observations. However, signif-
icant differences emerged between these two quantities (∼
0.2) in ERA-20CM and ERA-20C. Thus, a similar linear re-
lationship between 1P and 1RLW,SFC,UP might also hold
to a good approximation, although the results are less robust
than for 1P against 1DLR.

The correlation between globally averaged precipi-
tation and clear-sky net radiative atmospheric heating
(i.e., ρP,Ratm,cs ) was nearly identical to ρP,Ratm at multiyear
timescales (Fig. 3a). This suggested that the cloud effects
on the multiyear linear dependence between precipitation
variability and net atmospheric radiative fluxes may be ne-
glected. But the same is not true at timescales below a
few months, at which significant differences emerge be-
tween ρP,Ratm,cs and ρP,Ratm . The clear-sky approximation
holds at multiyear timescales for correlations of globally av-
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Figure 3. Cross-correlation coefficients against temporal scale
computed from Haar fluctuations of (a) LvP vs. Ratm (solid) and
LvP vs. Ratm,CS (dashed); (b) LvP vs. RLW,SFC (solid) and LvP
vs. RLW,SFC,CS (dashed). Red lines are computed from ERA-20C
and blue lines are from ERA-20CM.

eraged precipitation against net atmospheric longwave radia-
tive fluxes and also against the globally averaged net surface
longwave fluxes (Fig. 3b). Based on these results, it was fur-
ther hypothesized that cloud effects are also negligible for
the correlation between globally averaged precipitation and
DLR at multiyear temporal scales. This hypothesis could not
be tested directly because clear-sky DLR time series were not
available for the ECMWF datasets. Nonetheless, the results
in Sect. 4 based on an empirical algorithm for DLR estima-
tion under a clear-sky approximation provided support for
this hypothesis.

At this point, it is important to note that the existence of
strong correlations does not necessarily imply causality be-
tween two variables. However, the atmospheric energy bal-
ance in Eq. (2) provides a physical basis for the obtained
strong (negative) correlation values between precipitation
and atmospheric radiative fluxes. In fact, the multi-scale anal-
ysis presented here provided further robustness to previous
investigations on the importance of energetic constraints to
global precipitation, the dominant role of surface longwave
fluxes, namely DLR, and the negligible cloud effects in these
relationships (e.g., Stephens and Hu, 2010; Stephens et al.,
2012a, b). More importantly, a clear transition emerged be-
tween robust correlations at multiyear timescales and negli-

gible correlations at sub-yearly timescales, which was found
for globally averaged precipitation against atmospheric ra-
diative fluxes (particularly total net, net longwave, and DLR),
globally averaged precipitable water vapor against surface
temperature (and SST), global SST against global near-
surface air temperature, and, less robustly, globally averaged
precipitation against surface temperature (or SST).

Note that the correlation structure derived from Haar fluc-
tuations of different combinations of variables presented in
the present section is identical to the correlation structure
obtained by employing detrended cross-correlation analysis
(DCCA; see Figs. S1–S3 in the Supplement). DCCA has
been previously shown to robustly quantify correlations at
different timescales (Podobnik and Stanley, 2008; Piao and
Fu, 2016; Nogueira, 2017b, 2019, where detailed descrip-
tions of DCCA methodology are also provided). This result
provides one of the first empirical verifications for the multi-
scale correlation obtained from Haar fluctuations recently in-
troduced by Lovejoy et al. (2017).

4 Evaluation of the multiyear linear relationships
between globally averaged precipitation, clear-sky
DLR, and surface temperature

The strong correlations between globally averaged precipita-
tion and atmospheric longwave radiative fluxes imply that a
simple linear model should be able to reproduce the variabil-
ity in precipitation anomalies at multiyear timescales. This
hypothesis is tested in the present section, aiming to provide
robustness to the strong multiyear correlations presented in
Sect. 3. Specifically, the robustness of the tight correlation
between globally averaged precipitation and clear-sky DLR
at multiyear timescales is tested. Additionally, whether the
more robust correlation between globally averaged precipita-
tion and clear-sky DLR at multiyear timescales compared to
globally averaged precipitation against surface temperature
results in a better reconstruction of precipitation variability
by such a linear model is tested.

The clear-sky DLR can be derived, to a good approxi-
mation, from the globally averaged near-surface temperature
alone (e.g., Stephens et al., 2012b). Furthermore, given the
tight coupling between globally averaged temperature over
land and SST at multiyear timescales (Fig. 1b), it is hypoth-
esized that clear-sky DLR variability could be obtained, to a
good approximation, directly from the SST forcing. This hy-
pothesis is also supported by the nearly identical correlations
between globally averaged precipitable water vapor against
surface temperature or against SST (Fig. 1a).

Here two different algorithms to estimate clear-sky DLR
are tested: the Dilley–O’Brien model (Dilley and O’Brien,
1998) and the Prata model (Prata, 1996). In the Dilley–
O’Brien model,
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DLR2 y,DO = a1+ a2

(
SST2 y

SSTc

)6

+ a3

(
1PWV2 y+PWVc

PWVc

)1/2

, (5)

where a1 = 59.38 W m−2, a2 = 113.7 W m−2, and a3 =

96.96 W m−2 are the model parameters, and PWVc =

22.5 kg m−2 is the climatological value for precipitable water
vapor. The subscript “2 y” (e.g., DLR2 y) indicates a fluctua-
tion for 1t = 2 years. Note that DLRc,DO = a1+ a2+ a3 is
obtained by replacing the climatological values of PWV and
SST in Eq. (8).

The Prata model for 1DLR2 y,Pr is based on the Stefan–
Boltzmann equation:

DLR2 y,Pr = εclrσSBSST4
2 y, (6)

where σSB = 5.67× 10−8 W m−2 K−4 is the Stefan–
Boltzmann constant and

εclr = 1−
(
1+PWV2 y

)
exp

(
−
(
1.2+ 3PWV2 y

)1/2)
. (7)

The anomaly time series is computed from 1DLR2 y,Pr =

DLR2 y,Pr−DLRc,Pr, where DLRc,Pr is obtained by replac-
ing the climatological values of PWV and SST in Eqs. (9)
and (10).

The strong correlation between globally averaged precip-
itable water vapor and SST at multiyear timescales (Fig. 1a)
allowed for the removal of the PWV dependence in Eqs. (8)
and (11) by replacing PWV2 y ≈ αPWV,SST1SST2 y+PWVc.
The forcing 1SST2 y time series were obtained by coarse-
graining the deseasonalized (using Eq. 3) globally averaged
SST obtained from the GISSTEMP dataset. The sensitiv-
ity coefficient, αW,SST ≈ 0.08 K−1, was estimated by least-
squares regression of 1PWV2 y/PWVc against 1SST2 y,
pooling together all datasets (ERA-20C, ERA-20CM, and
20CR). The αPWV,SST estimates are summarized in Ta-
ble 1, including for each individual dataset, ranging between
0.07 and 0.10 K−1. Note that the obtained values are close
to the typical 0.07 K−1 value predicted by the Clausius–
Clapeyron relationship.

In this way, two reconstructed anomaly time series for
globally averaged precipitation were obtained using the
Dilley–O’Brien and the Prata algorithms. The climatologi-
cal globally averaged precipitation Pc ≈ 2.7 mm d−1 was es-
timated from the GPCP dataset. The sensitivity coefficient
αP,DLR ≈ 0.004 (W m2)−1 was estimated by least-squares re-
gression of 1P2 y/Pc against 1DLR2 y, pooling together all
available datasets (ERA-20C, ERA-20CM, 20CR, and GPCP
against CERES-EBAF). Note that, in estimating αP,DLR,
clear-sky DLR time series were used where available (i.e., for
ERA-20C and ERA-20CM), but they were replaced by (full-
sky) DLR otherwise (i.e., for 20CR and CERES-EBAF).
The αP,DLR estimates are summarized in Table 2, including

Table 1. Linear regression coefficient αW,SST estimated from
1PWV /PWVc against 1SST at 2-year resolution, assuming a re-
lationship as given by Eq. (1). The respective coefficient of determi-
nation is also provided. The αW,SST values are computed for ERA-
20C, 20CR, and for the ensemble of ERA-20CM simulations. Addi-
tionally, the coefficient is estimated by pooling together ERA-20C,
ERA-20CM (ensemble), and 20CR datasets.

Dataset αPWV,SST R2

(K−1)

ERA-20C 0.09 0.97
20CR 0.10 0.92
E20CM (ensemble) 0.07 0.92
All datasets 0.08 0.91

Table 2. Linear regression coefficient αP,DLR estimated from
1P/Pc against1DLR at 2-year resolution, assuming a relationship
as given by Eq. (11). The respective coefficients of determination
are also provided. The αP,DLR values are computed for ERA-20C,
20CR, and for the ensemble of ERA-20CM simulations. Addition-
ally, the coefficient is estimated by pooling together all datasets,
including GPCP observations against DLR from CERES-EBAF.

Dataset αP,DLR R2

((W m−2)−1)

ERA-20C 0.005 0.88
20CR 0.003 0.51
E20CM (ensemble) 0.004 0.81
All datasets (includes observations) 0.004 0.70

values obtained from each dataset (no estimate was made
for GPCP against CERES-EBAF due to the limited du-
ration of the latter), ranging between 0.003 (W m2)−1 and
0.005 (W m−2)−1.

Another simple linear model for the reconstruction of mul-
tiyear globally averaged precipitation anomaly time series
was tested based on the direct response (correlations) of P
to SST fluctuations, i.e., P2 y,SST ≈ αP,SST1SST2 yPc+Pc.
Again, 1SST2 y was obtained from the GISSTEMP dataset.
The sensitivity coefficient, αP,SST ≈ 0.02 K−1, was estimated
by least-squares regression of 1P2 y/Pc against 1SST2 y,
pooling together all datasets (ERA-20C, ERA-20CM, 20CR,
and GPCP against GISSTEMP). The αP,SST estimates are
summarized in Table 3, including for each individual dataset,
ranging between 0.02 and 0.04 K−1. Note that the obtained
values are close to the 0.01 to 0.03 K−1 range reported in
the relevant literature (e.g., Schneider et al., 2010; Trenberth,
2011; O’Gorman et al., 2012; Allan et al., 2014).

When compared against 1P2 y directly derived from
GPCP for the 1979 to 2010 period, the errors in the proposed
linear 1P2 y reconstructions were generally close to those
for atmospheric-model-based products (Fig. 4). 1P2 y,P r
displays the highest mean bias, somewhat higher than for
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Figure 4. Error estimates from simulated anomaly time series for P at 2-year resolution against GPCP computed for the 1979–2010 period,
including (a) mean bias (Bias), (b) root mean square error after bias correction (RMSEbc), (c) model standard deviation normalized by
observed standard deviation (σn), and (d) Pearson correlation coefficient (r). For the ERA-20CM dataset the range for all ensemble members
is shown, while “x” marks their mean value. The p value for all correlations shown in (d) is < 0.05.

Table 3. Linear regression coefficient αP,SST estimated from
1PPc against 1SST at 2-year resolution. The respective coeffi-
cients of determination are also provided. The αP,SST values are
computed for ERA-20C, 20CR, for the ensemble of ERA-20CM
simulations, and for GPCP against ERA-20CM control SST forc-
ing. Additionally, the coefficient is estimated by pooling together
all datasets.

Dataset αP,SST R2

(K−1)

ERA-20C 0.04 0.89
20CR 0.02 0.35
E20CM (ensemble) 0.02 0.73
GPCP 0.04 0.42
All datasets (includes observations) 0.02 0.53

atmospheric-model-based datasets, but also higher than the
mean bias for 1P2 y,DO and 1P2 y,SST (Fig. 4a). Note that
all atmospheric-model-based products considered here also
display a positive bias. While this may be due to a negative
bias of GPCP (e.g., Gehne et al., 2016), this observational
dataset represents the longest reliable dataset for global pre-
cipitation studies and was thus considered here as “the truth”.
More importantly, the mean bias is easy to correct by sim-

ply subtracting its value from the time series. This correction
was implemented here for all atmospheric-model-based and
linear-model-based 1P2 y time series. Figure 4c shows that
the normalized standard deviation (σn = σ2 y,model/σ2 y,obs)
estimated from 1P2 y,DO (∼ 0.4) and, particularly, from
1P2 y,SST (∼ 0.3) was lower than the values estimated from
atmospheric-model-based products (∼ 0.5–0.9). In contrast,
σn estimated from1P2 y,Pr was nearly 0.8, which was higher
than 20CR and most members in the ERA-20CM ensemble,
and was only outperformed by the ERA-20C dataset. The
root mean square error after bias correction (RMSEbc) esti-
mated from1P2 y,Pr and1P2 y,DO was well within the range
of values obtained from atmospheric-model-based products
(Fig. 4b), with the Prata model slightly overperforming the
Dilley–O’Brien model. RMSEbc estimated from 1P2 y,SST
was on the high end of the atmospheric-model-based range
of values and somewhat worse than for the DLR-based linear
models. Finally, the Pearson correlation coefficient between
models and observations (Fig. 4d) was similar amongst all
linear-based models and well within the range of values esti-
mated from the atmospheric-model-based products. The lat-
ter result was expected since all linear models were forced
by the same SST time series.
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Overall, these results suggested that 1P2 y,Pr (after bias
correction) reproduced the observations with similar accu-
racy to atmospheric-model-based products, including simi-
lar RMSEbc, variability amplitude, and phase of the signal.
1P2 y,DO displayed a similar performance for RMSEbc and
for the phase, but not for the variability amplitude. Finally,
1P2 y,SST had the worst performance concerning RMSEbc,
but also in capturing the variability amplitude, while it dis-
played a similar ability as the other linear models in re-
producing the phase. The overall weakest performance of
1P2 y,SST was coherent with the less robust correlations un-
derlying this model. Additionally, the results indicate that the
nonlinear transformations on SST employed in the Prata and
the Dilley–O’Brien algorithms improved the linear models.

5 Exploring scale invariance for stochastic
downscaling of precipitation to monthly
resolution

At sub-yearly timescales, the magnitude of the correlations
between globally averaged precipitable water vapor and SST,
precipitation and DLR, and precipitation and SST decreases
abruptly to negligible values (see Sect. 3). Additionally, the
cloud effects on the energetic constraints of precipitation
variability become non-negligible (Fig. 3). Consequently, the
linear relationships underlying the above simple linear recon-
structions of globally averaged precipitation at 2-year res-
olution are no longer appropriate at sub-yearly timescales.
Previous investigations have suggested that this transition
should be related to a fundamental transition in the stochas-
tic scale-invariant behavior of climate variables, which sep-
arates a high-frequency weather regime that extends up to
about the synoptic scales (around 10 days to 1 month in
the atmosphere and around 1 year in the oceans) from a
low-frequency weather (or macroweather) regime that ex-
tends up to a few decades (see, e.g., Lovejoy et al., 2017;
Nogueira, 2019). In the weather regime the amplitude of the
fluctuations tends to increase with timescale, while in the
macroweather regime the amplitude of the fluctuations tends
to decrease with increasing timescale, hence implying a con-
vergence toward the “climate normal” at timescales of a few
decades (Lovejoy, 2015).

In the present section, it is shown that the multi-scale anal-
ysis framework can also be taken advantage of to perform
stochastic downscaling from multiyear to monthly resolu-
tion. This exercise allows for the demonstration of the rel-
evance of understanding and characterizing the multi-scale
structure of atmospheric variables and its remarkable poten-
tial for stochastic downscaling applications.

Building on the strong scale-invariant symmetries present
in the variability of global and regional precipitation across
wide ranges of timescales (e.g., Lovejoy and Schertzer, 2013;
Nogueira et al., 2013; Nogueira and Barros, 2014, 2015;
Nogueira, 2017a, b, 2019), an algorithm was proposed here

to derive the sub-yearly statistics from the multiyear infor-
mation alone. The physical basis for this algorithm is that
while the atmosphere is governed by continuum mechan-
ics and thermodynamics, it simultaneously obeys statistical
turbulence cascade laws (e.g., Lovejoy and Schertzer, 2013;
Lovejoy et al., 2017).

Conveniently, precipitation (and many other atmospheric
variables) is characterized by low spectral slopes β < 1,
with quasi-Gaussian and quasi-non-intermittent statistics, at
timescales between ∼ 10 days and a few decades (Love-
joy and Schertzer, 2013; de Lima and Lovejoy, 2015; Love-
joy et al., 2015, 2017; Nogueira, 2017b, 2019). Grounded
by these scale-invariant properties, fractional Gaussian noise
was used here to generate multiple realizations of down-
scaled 1P at monthly resolution from each member of each
1P2 y time series:

1P1 m(t)= fGn1 m(t)
1P2 y(t)
fGn2 y(t)

, (8)

where fGn1 m is a fractional Gaussian noise, which was com-
puted by first generating a random Gaussian noise (g), then
taking its Fourier transform (̃g), multiplying by k−β/2, and
finally taking the inverse transform to obtain fGn1 m. The
mean of fGn1 m was forced to be equal to the number of
data points of 1P2 y. Then fGn2 y was obtained by coarse-
graining fGn1 m using 24-point (i.e., 2 years) length boxes.
In this way, 1P1 m,DO, 1P1 m,Pr, and 1P1 m,SST ensembles
are respectively generated from the bias-corrected 1P2 y,DO,
1P2 y,Pr, and 1P2 y,SST time series. A total of 100 plausible
realizations are generated for each ensemble, corresponding
to 100 different realizations of fGn1 m. Based on recent inves-
tigations of P scale invariance properties, a spectral exponent
β ≈ 0.3 is assumed (de Lima and Lovejoy, 2015; Nogueira,
2019). In Eq. (11), the 2-year resolution time series were as-
sumed to have a constant value for every month inside each
2-year period.

Note that a resolution limit should exist for the proposed
stochastic downscaling algorithm, namely at timescales be-
low ∼ 10 days when a fundamental transition occurs in the
scaling behavior of most atmospheric fields (including glob-
ally averaged precipitation; see, e.g., Lovejoy and Schertzer,
2013; Lovejoy, 2015; de Lima and Lovejoy, 2015; Nogueira,
2017a, b, 2019). At faster timescales intermittency becomes
non-negligible and the quasi-Gaussian approximation to the
statistics is no longer robust.

The proposed downscaling methodology corresponds to
treating the sub-yearly frequencies as random “weather
noise”, which is characterized, to a good approximation,
by scale-invariant behavior with quasi-Gaussian statistics
(Vallis, 2009; Lovejoy et al., 2015). A similar downscal-
ing methodology has been previously demonstrated to re-
produce the spatial sub-grid-scale variability of topographic
height (Bindlish and Barros, 1996), precipitation (Bindlish
and Barros, 2000; Rebora et al., 2006; Nogueira et al., 2013;

Earth Syst. Dynam., 10, 219–232, 2019 www.earth-syst-dynam.net/10/219/2019/



M. Nogueira: The multi-scale structure of atmospheric energetic constraints on globally averaged precipitation 229

Nogueira and Barros, 2015), and clouds (Nogueira and Bar-
ros, 2014).

Figure 5a shows that the PDFs computed from 1P1 m,DO,
1P1 m,Pr, and 1P1 m,SST were in remarkable agreement with
PDFs obtained from the GPCP observational dataset for the
1979–2010 period, representing a significant improvement
compared to all atmospheric-model-based products. This im-
proved PDF accuracy was quantified using the Perkins skill
score, S score (Perkins et al., 2007), defined as:

S score= 100×
M∑
i=1

min
[
fmod(i),fobs(i)

]
(9)

where fmod(i) and fobs(i) are respectively the frequency of
the modeled and observed P anomaly values in bin i, M is
the number of bins used to compute the PDF (here M = 15),
and min[x, y] is the minimum between the two values. The
S score is a measure of similarity between modeled and ob-
served PDFs such that if a model reproduces the observed
PDF perfectly then S score= 100 %.

The linear-based models showed S score values around
95 %, which were significantly higher than the∼ 80 % found
for the atmospheric-model-based products (Fig. 6). Further-
more, the stochastic model captured the change in the PDFs
between two separate periods (1979–1990 and 1999–2010;
Fig. 5b), while preserving the remarkably high (≥ 90 %) S
scores (Fig. 6, blue and red markers). Indeed, the S scores
for linear-based models were consistently better than the
S scores obtained from atmospheric-model-based products
(∼ 80 %). Despite some differences between PDFs obtained
from 1P1 m,DO, 1P1 m,Pr, and 1P1 m,SST, their similar per-
formance in reproducing observations was somewhat unex-
pected given the distinct performances in reproducing the ob-
served time series at multiyear resolutions. While the error
analysis here was based on a limited sample (mainly due to
the short duration of the satellite period), these results sug-
gested that the proposed stochastic downscaling mechanism
is quite robust in reproducing the monthly statistics of glob-
ally averaged precipitation, with only moderate sensitivity to
the coarse-resolution forcing.

6 Discussion and conclusions

Atmospheric variables display significant variability over a
wide range of temporal scales due to changes in external
forcings (including surface fluxes, changes to greenhouse
gases and aerosol concentrations, solar forcing, and volcanic
eruptions), but also due to intrinsic modes of atmospheric
variability. Additionally, external and internal atmospheric
processes interact nonlinearly amongst themselves, result-
ing in an intricate multi-scale structure, which is still ill un-
derstood and responsible for significant uncertainties in cli-
mate models. Here a multi-scale analysis framework was em-
ployed, aiming to disentangle the complex structure of glob-
ally averaged precipitation variability.

Figure 5. PDFs estimated from monthly anomaly time series
for P from ERA-20C (red), ERA-20CM (dark blue), 20CR (pink),
GPCP (black), 1P1 m,DO (dark green), 1P1 m,Pr (light green), and
1P1 m,SST (light blue). In (a) the PDFs are estimated for the 1979–
2010 period, and in (b) the PDFs are estimated for the 1979–
1990 period (solid) and the 1999–2010 period (dashed).

Figure 6. S score computed from the different P simulations
against GPCP. The values estimated for the full satellite pe-
riod (1979–2010) are presented in black, for the 1979–1990 period
are presented in red, and for the 1990–2010 period are presented in
blue. For the ERA-20CM dataset, the S score is estimated from the
10-member ensemble PDF.
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The multi-scale correlation structure obtained from Haar
fluctuations suggested that global-mean precipitation vari-
ability at multiyear timescales is linearly related to the net
atmospheric radiative fluxes, corresponding to the dominant
effect of energetic constraints on precipitation variability.
Furthermore, this linear relationship is dominated by its long-
wave component and, more specifically, by the surface long-
wave radiative fluxes, particularly DLR. The results also sug-
gest that clouds play a negligible role in these linear correla-
tions at multiyear scales.

Building on the previous works of Lovejoy et al. (2017)
and Nogueira (2019), the present paper highlights a crit-
ical transition in the multi-scale correlation structure at
timescales of ∼ 1 year, revealing a change in the control
mechanisms of several atmospheric variables, including pre-
cipitation. Specifically, at multiyear timescales the following
is true: (i) globally averaged precipitation becomes tightly
correlated with the net atmospheric radiative fluxes (|ρ|0.8),
and this correlation is dominated by the downwelling long-
wave radiative flux at the surface; (ii) the cloud effects on
the atmospheric radiative fluxes in (i) can be neglected;
and (iii) globally averaged precipitable water vapor becomes
tightly correlated (ρ ∼ 0.9) with surface temperature. The
respective sensitivity coefficient for multiyear fluctuations
of precipitable water vapor to surface temperature is esti-
mated here to be 0.07 % K−1, close to the value predicted
by the Clausius–Clapeyron relationship. (iv) Globally aver-
aged SST and near-surface air temperature over land become
strongly correlated (ρ ∼ 0.7), implying a strong atmosphere–
ocean coupling in agreement with and extending the re-
sults from Lovejoy et al. (2017) based on one observational
dataset. In contrast, at sub-yearly timescales, the magnitude
of all these correlations decreases abruptly towards negligi-
ble values, and cloud effects are no longer negligible in the
correlations between atmospheric radiative fluxes and pre-
cipitation. Hints of a similar, but less robust, transition also
emerged for the correlation structure between globally aver-
aged precipitation and surface temperature, with negligible
correlations at sub-yearly timescales, which tend increase at
multiyear timescales, although the latter displayed significant
spread amongst different datasets (ranging between ∼ 0.4
and ∼ 0.7).

The transition found here also contributes to sharpening
the picture from previous studies reporting a “slow” re-
sponse, in which globally averaged precipitation increases
due to increasing surface temperature, and a “fast” response,
in which the atmosphere rapidly adjusts to changes in top-of-
atmosphere radiative forcing, and that is independent of tem-
perature fluctuations (Allen and Ingram, 2002; Bala et al.,
2010; Andrews et al., 2010; O’Gorman et al., 2012; Allan
et al., 2014). The correlation structure found here suggests
that the slow component corresponds to multiyear timescales
and that radiative constraints (particularly surface longwave
fluxes) are the key mechanism controlling precipitation vari-
ability rather than temperature, while cloud effects are neg-

ligible. On the other hand, the correlations here confirm the
breakdown of the linear relation between temperature fluc-
tuations at fast (sub-yearly) timescales, but the dominant ef-
fect of top-of-atmosphere radiative forcing is not evident and,
most likely, the situation is much more complex (for exam-
ple, surface sensible heat fluxes seem to become relevant at
these timescales).

The robustness of this emergent multi-scale correlation
structure is demonstrated by proposing simple models for
the reconstruction of globally averaged precipitation at mul-
tiyear timescales. Anomaly time series for globally aver-
aged precipitation at 2-year resolution were derived from
SST observations alone, either directly based on precipita-
tion vs. SST correlation structure or by combining the more
robust energetic constraints of globally averaged precipita-
tion (namely the precipitation vs. clear-sky DLR correlation)
with an empirical algorithm for clear-sky DLR estimation
and the Clausius–Clapeyron relationship. After correcting
for their systematic mean bias, the highly idealized model
for 1P2 y based on clear-sky DLR estimated from the Prata
algorithm displayed similar accuracy in reproducing obser-
vations as atmospheric-model-based products, as measured
by RMSEbc, the Pearson correlation coefficient, and normal-
ized standard deviation. Finally, the model based on precipi-
tation vs. SST correlation showed the weakest performance,
which agrees with the less robust correlations underlying this
idealized model.

The proposed linear models cannot be extended to sub-
yearly timescales because all the correlations upon which
they rely become negligible. This abrupt transition in the
multi-scale correlation structure implies that at sub-yearly
timescales the tight linear coupling between atmospheric and
ocean temperature, the Clausius–Clapeyron relationship, and
the atmospheric energy balance are no longer dominant lin-
ear constraints for globally averaged precipitation. Nonethe-
less, the multi-scale analysis framework provides another
path for the reconstruction of precipitation statistics at sub-
yearly resolution. A stochastic downscaling algorithm based
on scale-invariant symmetries of precipitation was applied to
1P2 y reconstructed time series, resulting in monthly glob-
ally averaged precipitation PDFs. Remarkably, the recon-
structed PDFs at monthly resolution showed better accuracy
in reproducing observed statistics than atmospheric-model-
based products, as measured by the PDF matching S score
computed over decadal and 30-year periods. These results
highlight the relevance and potential applications of multi-
scale frameworks for atmospheric sciences.

Data availability. ERA-20C (Poli et al., 2015) and ERA-20CM
(Hersbach et al., 2015) were provided by ECMWF and are avail-
able through the website http://apps.ecmwf.int/datasets. 20CR re-
analysis (Compo et al., 2011), GISSTEMP (Hansen et al., 2010),
and GPCP (Adler et al., 2003) precipitation products were pro-
vided by NOAA/OAR/ESRL PD, Boulder, Colorado, USA, from
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