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Abstract. Sea ice in both polar regions is an important indicator of the expression of global climate change and
its polar amplification. Consequently, broad interest exists on sea ice coverage, variability and long-term change.
However, its predictability is complex and it depends strongly on different atmospheric and oceanic parameters.
In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution,
we applied a robust statistical model based on different oceanic and atmospheric parameters to calculate an
estimate of the September sea ice extent (SSIE) on a monthly timescale. Although previous statistical attempts
of monthly/seasonal SSIE forecasts show a relatively reduced skill, when the trend is removed, we show here
that the September sea ice extent has a high predictive skill, up to 4 months ahead, based on previous months’
oceanic and atmospheric conditions. Our statistical model skillfully captures the interannual variability of the
SSIE and could provide a valuable tool for identifying relevant regions and oceanic and atmospheric parameters
that are important for the sea ice development in the Arctic and for detecting sensitive/critical regions in global
coupled climate models with a focus on sea ice formation.

1 Introduction

Arctic sea ice plays an important role in modulating the
global climate system by influencing the atmospheric and
oceanic circulation in polar regions. Moreover, it has a strong
impact also on the global economic system through changes
in marine and natural resources development. The sea ice
extent over the Arctic region has undergone an extraordi-
nary decline during the last decades that can be linked to
climate change (Allison et al., 2009; Kay et al., 2011; Notz
and Marotzke, 2012; Stroeve and Notz, 2018). The trends in
the Arctic sea ice extent are negative for all months, with
the largest trend recorded at the end of the melt season in
September (Serreze et al., 2007), with an average decline of
12.9 % per decade relative to the long-term mean of 1981–
2010 September average (Cavalieri and Parkinson, 2012;
Comiso et al., 2017). These negative trends, with their envi-
ronmental and economic implications as well as its impacts
on human society, have led to a rising demand for accurate

sea ice predictions at monthly, seasonal and up to decadal
timescales, which in turn will be able to address the grow-
ing demands from different stakeholders and the scientific
community (Meier et al., 2014). As such, an accurate sea ice
prediction plays a crucial role for ecosystems, coastal com-
munities, planning for new shipping ports, oil and gas explo-
ration and marine transportation. The 10 lowest September
sea ice extents all occurred in the past 10 years, and climate
projections indicate that the Arctic Ocean could be ice free
(sea ice less than 1×106 km2 for at least 5 consecutive years)
in September in the second half of the 21st century (IPCC,
2013). As a result, the ship traffic and Arctic resources ex-
traction have already increased (Pizzolato et al., 2014). For
example, the exploitation of shipping via the Northwest Pas-
sage or Northeast Passage could reduce the navigational dis-
tance between Europe and Asia by ∼ 40 % compared to the
route via the Suez Canal (Schøyen and Bråthen, 2011). The
reduction in distance compared to the Suez and/or Panama
Canal routes could result in large cost savings due to reduced
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fuel consumption and an increase in the number of ships
(Lassere, 2015). Melia et al. (2016) have shown that by mid-
century, the frequency of navigable period will double and
the routes across the central Arctic will become available.
For example, for a high-emission scenario, they have shown
that by the late 21st century trans-Arctic shipping might be-
come commonplace, with the shipping season ranging from
4 to 8 months. Overall, the summertime use of these routes
by different vessels (i.e., cargo ship and tanks) has increased
(Eguíluz et al., 2016); thus, the need for a proper forecast for
the Arctic sea ice conditions has become imperative. Cur-
rently, forecasting the open water route through the Arctic
basin is accurate within 200 km when the predictions are ini-
tialized in July (Melia et al., 2016). As such, early knowledge
on the potential opening of the maritime Arctic routes could
allow a better management for the shipping companies to op-
timize (in terms of time and costs) shipping routes between
the Atlantic and the Pacific Oceans (Hassol, 2004; Smith and
Stephenson, 2013). However, the opening of the Northeast
and Northwest passages does not guarantee ice-free transects
along the passages at all times and can always include the
possibility of drifting ice flows, which pose high risks and
potential environmental danger for conventional ships when
they are damaged in case of accidents. Pizzolato et al. (2016)
have shown that, despite the persistence of low sea ice con-
ditions since 2007, very few shipping activities have been
recorded within the northern route of the Northwest Passage.
This might be attributed to the multiyear ice concentrations
in the Canadian Arctic waters, which strongly influences the
shipping activity. Hence, a proper forecast does not imply a
danger-free transect as long as the Arctic Ocean is ice cov-
ered with thick multiyear ice for its larger parts over the sig-
nificant times of the year.

Although the evolution of Arctic sea ice physical prop-
erties has been extensively studied, the prediction of de-
trended Arctic sea ice extent, with lead times of 3 months
and longer, has not been very promising (Lindsay et al.,
2008; Blanchard-Wrigglesworth et al., 2011). From a fore-
casting point of view, the evolution of autumn Arctic sea ice
is closely associated with initial conditions in the previous
winter and spring. Different studies have emphasized that
some parameters contribute significantly to the improvement
of the seasonal sea ice forecast skill at different time lags
(Holland and Stroeve, 2011; Lindsay et al., 2008). For ex-
ample, sea surface temperature and sea ice concentration in
spring are highly relevant predictors for the minimum Arctic
sea ice extent (Drobot et al., 2006). Some studies suggested
that accurate sea ice thickness could increase the forecast
skill 2 months ahead (Day et al., 2014; Dirkson et al., 2017).
Also, the spring melt pond fraction has been employed to im-
prove the forecast skill of the Arctic minimum sea ice extent
(Schröder et al., 2014).

Currently, there are different approaches used to make sea
ice forecasts: ice–ocean–atmosphere coupled models, statis-
tical models, best-guess models and mixed models (Stroeve

et al., 2014; Hamilton and Stroeve, 2016). From a statistical
point of view, Drobot et al. (2006) showed that 46 % of the
pan-Arctic minimum sea ice extent would be predictable as
early as February based on monthly sea ice concentration,
surface albedo, downwelling longwave radiation and surface
skin temperature. Lindsay et al. (2008) have shown that their
statistical model based on a wide range of predictors (e.g.,
atmospheric circulation indices, sea ice extent and sea ice
concentration, ocean temperature at different levels) exhib-
ited a greater skill in predicting the September sea ice ex-
tent (SSIE) than those by Drobot et al. (2006). The forecasts
based on the state-of-the-art coupled atmosphere–ocean sea
ice models (Chevallier et al., 2013; Sigmond et al., 2013) do
not show better results when compared with the statistical
models (Kapsch et al., 2014; Schröder et al., 2014; Zhan and
Davies, 2017). These caveats indicate that our understanding
regarding the controlling factors of Arctic sea ice may still
be insufficient. Overall, skillful forecasts extend only 2 to 5
months ahead, for the summer months (Stroeve et al., 2015;
Schröder et al., 2014), regardless of the type of the model
used for the forecast (dynamical or statistical). The results
and error margins based on these different approaches have
highlighted how difficult it is to make skillful prediction for
the SSIE. This is particular true for the years with extreme
low September sea ice concentrations (e.g., 2012 or 2007),
with both the dynamical and the statistical models showing
similar limitations (Stroeve et al., 2014, 2015; Schröder et
al., 2014; Hamilton and Stroeve, 2016). Stroeve et al. (2014)
have shown that seasonal predictions of the SSIE are most ac-
curate in years when the sea ice extent is near the long-term
trend, but skillful sea ice extent prediction appears challeng-
ing in years when the weather plays a larger role (Hamilton
and Stroeve, 2016).

In order to improve the monthly/seasonal prediction skill
of the sea ice extent, one possibility would be to identify sta-
ble predictors (the correlation coefficient between the pre-
dictor and the predictand does not change in time) and to
develop a statistical forecast model based on these predic-
tors. Following this idea, here we analyze the oceanic and
atmospheric conditions associated with the SSIE in order
to identify potential predictors based on a simple statistical
methodology and place them in a longer temporal context.
Our statistical model takes into account different atmospheric
and oceanic variables following the approach in Ionita et
al. (2008, 2014, 2018) and Ionita (2017). These parameters
are sea level pressure (SLP), air temperature (TT), precip-
itable water content (PWC), surface zonal wind (USURF),
surface meridional wind (VSURF), the ocean heat content
integrated over the first 700 m (OHC), sea surface temper-
ature (SST) and water temperature integrated over the first
100 m (OT100), and they are used in order to calculate an es-
timate of SSIE. The paper is structured as follows: the data
and methods used in this study are presented in Sect. 2, while
the main results of our analysis are shown in Sect. 3. The
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discussion and concluding remarks are presented in Sects. 4
and 5.

2 Data and methods

2.1 Data

The monthly sea ice extent has been extracted from the Na-
tional Snow and Ice Data Center ftp server (ftp://sidads.
colorado.edu/DATASETS/NOAA/G02135/north/, last ac-
cess: 10 May 2018) (Fetterer et al., 2016).

For the Northern Hemisphere temperature and atmo-
spheric circulation, we use the monthly means of air temper-
ature at 2 m (TT), downward longwave radiation flux (DW),
zonal wind (USURF), meridional wind (VSURF), precip-
itable water content (PWC) and the mean sea level pres-
sure (SLP) from the NCEP/NCAR 40-year reanalysis project
(Kalnay et al., 1996) on a 2.5◦× 2.5◦ grid. Global sea surface
temperature (SST) is extracted from the Extended Recon-
structed Sea Surface Temperature data (ERSSTv5) (Huang
et al., 2014). This data set covers the period 1854–present
and has a spatial resolution of 2◦× 2◦. The global heat con-
tent data in the first 700 m (OHC) and the ocean temperature
integrated over the first 100 m (OT100) are extracted from
the Global Ocean Heat and Salt Content database (Levitus et
al., 2012; Boyer et al., 2013).

The monthly Atlantic Multidecadal Oscillation (AMO)
index has been calculated as the average of monthly SST
anomalies with respect to the mean over the North Atlantic
north of 25◦ N (25–60◦ N, 75–7◦W). For the AMO index
computation, we used the RRSSTv5 data set (Huang et al.,
2014). In this study, we use the yearly mean of AMO index.
Table 1 gives an overview of all the data sets included in
the study. All used data sets have been detrended before the
analysis by computing the linear trend for the entire time se-
ries/gridded fields in question. This trend was then subtracted
from the initial time series/gridded data set. The linear trend
was estimated using a least-squares linear regression.

2.2 Stability maps

The statistical model used in this study for the estimation
of SSIE is based on a methodology successfully used to
make monthly/seasonal streamflow predictions for the cen-
tral European rivers (e.g., Elbe river, Rhine river, Danube
river, Ionita et al., 2008, 2014, 2018; Ionita, 2017; Meißner
et al., 2017). Furthermore, they were used for identifying the
drivers of the Antarctic sea ice variability (Ionita et al., 2018).
The basic idea of this method is to identify regions where the
spatiotemporal distribution of the predictors is stable when
correlated with the pan-Arctic SSIE. The SSIE has been cor-
related with the potential predictors from previous months
(Table 2) in a moving window of 21 years, and the statistical
significance of the correlation coefficient was tested using
a two-sided Student’s t test. The correlation is considered

stable for those grid points where SSIE and the large-scale
predictors (e.g., OHC, OT100, SST, SLP, TT, PWC, DW,
USURF and VSURF) are significantly correlated at 95 %,
90 %, 85 % and 80 % significance levels for more than 80 %
of the 21-year windows, covering the period 1979–2007. We
choose the period 1979–2007 as the calibration period, as
both extreme years of sea ice extent, namely 1996 and 2007,
were included and it provides a climate-relevant period of
nearly 30 years. The areas where the correlation coefficient
is stable and positive are represented as dark red (95 %),
red (90 %), orange (85 %) and yellow (80 %), while the re-
gions where the correlation coefficient is stable and nega-
tive are represented as dark blue (95 %), blue (90 %), green
(85 %) and light green (80 %). Such maps are referred to in
our study as stability maps, and their spatial structures re-
main qualitatively the same if the significance levels that de-
fine the stability of the correlation vary within reasonable
limits and if the length of the moving window varies be-
tween 15 and 25 years. The optimal predictors are defined
as the average values over the stable regions for each grid-
ded parameter. For the current analysis, only regions where
the correlation is above 90 % significance level are retained
for further analysis (Fig. 1). The raw stability maps be-
tween SSIE (pan-Arctic and regional) and the potential pre-
dictors are shown in Figs. S3–S15. Although the length of
our time series is relatively short (40 years), the methodol-
ogy proved to work also in cases of time series < 40 years
(Ionita et al., 2018). Moreover, we use the same method-
ology, with the same number of years (40 years), for the
prediction of September Arctic and Antarctic sea ice (https:
//www.arcus.org/sipn/sea-ice-outlook/2017/post-season, last
access: 10 May 2018).

As a further main contributor to our forecast model, we use
persistence, defined here as the sea ice extent from previous
months (e.g., January, February and up to August). Persis-
tence of sea ice anomalies stands as the first source of pre-
dictability for sea ice (Guemas et al., 2016; Walsh and John-
son, 1979; Blanchard-Wrigglesworth et al., 2011).

2.3 Multiple linear regression

For the forecast, all data sets were separated into two parts:
(1) the calibration period (1979–2007) and (2) the valida-
tion period (2008–2017). The optimal predictors are iden-
tified by employing stepwise multiple regression analysis
(e.g., Von Storch and Zwiers, 1999). Although the “stabil-
ity maps” methodology (Fig. 1) identifies multiple stable
regions for each atmospheric/oceanic parameter (Figs. S3–
S15), after applying the stepwise multiple regression, the
optimal/final prediction model is based just on the regions
shown in Figs. 1–3 and 5–7. To forecast the September sea
ice extent, we have used a multiple linear regression model
with the regression equation
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Table 1. Name, abbreviation, source, spatial and temporal resolution of the data sets used in this study.

Name Source Temporal Spatial Reference
resolution resolution

Arctic sea ice extent ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/ 1979–2017 Fetterer et al. (2016)
(last access: 10 May 2018)

AMO index https://climexp.knmi.nl/data/iamo_ersst.dat 1979–2017 Huang et al. (2014)
(last access: 10 May 2018)

Mean air temperature at ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/ 1979–2017 2.5◦× 2.5◦ Kalnay et al. (1996)
2 m (TT) (last access: 6 June 2018)

Downward longwave ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/ 1979–2017 2.5◦× 2.5◦ Kalnay et al. (1996)
radiation (DLR) (last access: 6 June 2018)

Zonal surface wind ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979–2017 2.5◦× 2.5◦ Kalnay et al. (1996)
(USURF) (last access: 6 June 2018)

Meridional surface wind ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979–2017 2.5◦× 2.5◦ Kalnay et al. (1996)
(VSURF) (last access: 6 June 2018)

Precipitable water ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979–2017 2.5◦× 2.5◦ Kalnay et al. (1996)
content (PWC) (last access: 6 June 2018)

Sea level pressure (SLP) ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface/ 1979–2017 2.5◦× 2.5◦ Kalnay et al. (1996)
(last access: 6 June 2018)

Sea surface temperature ftp://ftp.ncdc.noaa.gov/pub/data/cmb/ersst/v5/netcdf/ 1979–2017 2.0◦× 2.0◦ Huang et al. (2014)
(ERSSTv5) (last access: 6 June 2018)

Ocean heat content in https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/ 1979–2017 2.5◦× 2.5◦ Levitus et al. (2012)
the first 700 m (OHC) (last access: 6 June 2018) Boyer et al. (2013)

Ocean temperature in the https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/ 1979–2017 2.5◦× 2.5◦ Levitus et al. (2012)
first 100 m (OT100) (last access: 6 June 2018) Boyer et al. (2013)

Table 2. Time lags used for the forecast of SSIE. Seasonal averages are indicated as winter (December/January/February – DJF), spring
(March/April/May – MAM), summer (JJA – June/July/August) and autumn (September/October/December – SON).

Variable Time lag Month Season

TT, DLR, USURF, VSURF, PWC, SLP 1–7 months, 1–2 seasons January–July DJF, MAM
ERSSTv5 1–7 months, 1–2 seasons January–July DJF, MAM
OHC, OT100 1–4 seasons, 1–4 years Annual, DJF, MAM, JJA, SON
AMO index 1–4 years Annual mean

Y = β0+β1x1+β2x2+ . . .+βnxn+ ε, (1)

where Y represents the SSIE, βo, β1, β2, . . . βn are constants
determined by the least-squares procedure, x1, x2, . . . xn are
the predictors used (e.g., OHC, OT100, etc.), and ε is the
error.

In this study, we choose stepwise regression. Thus, each
predictor was prioritized based on its correlation coefficient
with the SSIE and was added to the model in that order. As
we added more predictors to the model, the F statistic was
used to determine whether the added predictors were signifi-
cant in the regression equation. Entrance and exit criteria for
the F statistic were set to 0.05 and 0.1, respectively. Stepwise
regression was used because it prioritizes predictors based on
the partial correlation and it is likely that high and signifi-
cant correlations will reflect underlying physical processes.

In order to estimate possible overfitting, we make use of the
Akaike information criterion (AIC) (Von Storch and Zwiers,
1999), the explained variance, R2 and the residual standard
error. A workflow of the selection of the optimal model for
the SSIE prediction is shown in the Supplement and Fig. S2.

3 Results

3.1 Pan-Arctic September sea ice prediction

The skill of a long-range forecast for the Arctic SSIE is as-
sociated with the predictors that represent the slow varying
components of the climate system that are able to integrate
the climate information such as ocean heat content and SST
(Guemas et al., 2016; Lindsay et al., 2008). These variables
can be used as potential predictors for months and even sea-
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Figure 1. Stability map of the correlation between September sea ice extent and (a) OHC SON, (b) SST MAM, (c) SLP May, (d) PWC Apr
and (e) VSURF MAM. Regions where the correlation is stable, positive and significant for at least 80 % of the 21-year windows are shaded
with dark red (95 %), red (90 %), orange (85 %) and yellow (80 %). The corresponding regions where the correlation is stable, but negative,
are shaded with dark blue (95 %), blue (90 %), green (85 %) and light green (80 %). The black boxes indicate the regions used for the
September sea ice extent at the end of May.

sons in advance due to their long-term memory. Thus, here
we investigate the potential link between the Arctic SSIE
(Fetterer et al., 2016) and OHC, OT100 (Levitus et al., 2012;
Boyer et al., 2013) and SST (Huang et al., 2014) as long-
term predictors (lags∼ 4 years (AMO index) up to 2 months
in advance; see Table 2 for a detailed description of all the
lags used in the study). On shorter timescales (2–4 months),
the atmospheric circulation, especially during the summer
months, plays a major role in driving the Arctic sea ice vari-
ability (Guemas et al., 2016). The atmospheric circulation
can substantially contribute to the skill of the sea ice predic-
tions. As such, for the SSIE prediction, we have also tested
the skill of atmospheric variables (up to 4 months in ad-
vance), e.g., SLP, TT, PWC, USURF and VSURF (Kalnay et
al., 1996). Atmospheric moisture content (e.g., clouds, water
vapor content) has an impact on the net surface radiation bal-
ance and hence also on the SSIE (Kapsch et al., 2013, 2014).
As a measure for this impact, we use the precipitable water
content (PWC) as an additional predictor.

For the final forecast, based on data available at the end of
May (4 months ahead of forecast), we have retained all iden-
tified stable regions shown as black boxes in Fig. 1. For the
forecast based on June data, we have included also the stable
regions based on all June stability maps (Fig. 2). We have

applied the same technique for the July data (Fig. 3). For
SSIE prediction based on the end-of-May data, the optimal
model is based on a combination of OHC SON, SST MAM,
PWC Apr, VSURF MAM and SLP May (Table 3). Together
with these identified stable regions, the optimal model in-
cludes also the persistence of sea ice extent, here the sea
ice extent from the previous March (SIE Mar), as well as
the annual Atlantic Multidecadal Oscillation index, with a
lag of 4 years (AMO L4). The highest correlation between
SSIE and the annual AMO index was found at a time lag
of 4 years (AMO leads SSIE). The time lag identified in our
analysis is in line with previous studies (Day et al., 2012; Ma-
hajan et al., 2011). The observed and forecasted values based
on the May data are shown in Fig. 4a. The explained vari-
ance of the model, over the calibration (validation) period, is
81 % (71 %), and the correlation coefficient between the ob-
served and forecasted SSIE is r = 0.90 (r = 84) (99.9 % sig-
nificance level). To better assess the skill of the SSIE predic-
tion, the root mean square error (RMSE), the Nash–Sutcliffe
efficiency (NSE) and the index of agreement (d) are calcu-
lated, among other statistical tests (see Table S1 in the Sup-
plement and the Supplement file for a definition of all the
metrics used to test the skill of the model). The forecasted
model based on May data shows very good skill (Table S1):
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NSE= 0.82 (0.68) (NSE= 1 indicates a perfect model) and
d = 0.95 (0.88) (d = 1 indicates a perfect match between the
observed and forecasted values; d = 0 indicates no agree-
ment at all).

Following the same steps as in the case of May data, for
the model based on June data, the parameters contributing
to the optimal forecast model are shown in Fig. 2. As addi-
tional predictors, on top of those for May (Fig. 1), we have
VSURF Jun, USURF Jun and TT Jun (Table 3). The ob-
served and forecasted values of SSIE based on June data are
shown in Fig. 4b. The overall explained variance of the June-
based model, over the calibration (validation) period, is 85 %
(79 %), and the correlation coefficient between the observed
and forecasted SSIE values is r = 0.92 (r = 0.89) (99.9 %
significance level). The June-based model exhibits also very
good skill and shows slight improvements compared to the
May-based model: NSE= 0.85 (0.78) and d = 0.96 (0.93).
For the model based on July data, the parameters contribut-
ing to the optimal forecast model, on top of those based on
May (Fig. 1) and June (Fig. 2), are shown in Fig. 3 and
Table 3. The observed and predicted values of SSIE based
on July data are shown in Fig. 4c. The overall explained
variance of the June-based model, over the calibration (val-
idation) period, is 86 % (81 %), and the correlation coeffi-
cient between the observed and forecasted SSIE values is
r = 0.93 (r = 0.90) (99.9 % significance level). The July-
based model exhibits also very good skill and shows also
slight improvements compared to the May- and June-based
models: NSE= 0.86 (0.80) and d = 0.96 (0.94).

3.2 Application of the methodology for regional SSIE
prediction

To test the robustness of our statistical model and to move
towards stakeholder-relevant regions, in this study, we are
investigating also the skill of our model at regional scale.
Thus, we have repeated the same analysis as in the pre-
vious section but for the sea ice extent averaged over the
East Siberian Sea (ESS) (Fig. S1 in the Supplement). In
this study, we focus on the ESS because in September 2007
and 2012, negative ice concentration anomalies were par-
ticularly pronounced over this region of the Arctic Ocean
(Fig. S1a and b, respectively) and the highest variability of
the SSIE is recorded here (Fig. S1c). In addition, since 2011,
the eastern ESS has been nearly ice free (< 10 % SSIE) at
the end of summer (Polyakov et al., 2017). Moreover, when
looking at the correlation coefficients between the pan-Arctic
SSIE and regional September SIE, the highest correlation, at
lag 0, is found with ESS SSIE (r = 0.72, Table 4).

The stability maps between the detrended ESS SSIE and
the large-scale oceanic and atmospheric fields are shown in
Fig. 5 (stability maps based on May and previous months’
data), Fig. 6 (stability maps based on June and previous
months’ data) and Fig. 7 (stability maps based on July and
previous months’ data), respectively. For ESS SSIE pre-

diction based on the end-of-May data, the optimal model
is based on a combination of annual OT100, SST MAM,
SLP Jan, VSURF MAM, PWC May, TT May and DW
MAM (Table 5). The observed and forecasted values based
on the May data are shown in Fig. 8a. The explained vari-
ance of the model, over the calibration (validation) period,
is 88 % (58 %), and the correlation coefficient between the
observed and forecasted ESS SSIE is r = 0.94 (r = 0.77)
(99.9 % significance level). The forecasted model based on
the May shows very good skill (Table S2): NSE= 0.88 (0.57)
(NSE= 1 indicates a perfect model) and d = 0.97(0.86) (d =
1 indicates a perfect match between the observed and fore-
casted values; d = 0 indicates no agreement at all).

For the model based on June data, the parameters con-
tributing to the optimal forecast model in addition to the May
variables are shown in Fig. 6 and Table 5. As additional pre-
dictors, on top of May data (Fig. 5), we have SIE Jun and
TT Jun (Table 5). The observed and forecasted values of ESS
SSIE based on June data are shown in Fig. 8b. The overall
explained variance of the June-based model, over the cali-
bration (validation) period, is 91 % (71 %), and the correla-
tion coefficient between the observed and forecasted SSIE
values is r = 0.95 (r = 0.84) (99.9 % significance level). The
June-based model exhibits also very good skill and shows
slight improvements compared to the May-based model:
NSE= 0.91 (0.69) and d = 0.98 (0.91). For the model based
on July data, the parameters contributing to the optimal fore-
cast model, on top of May data (Fig. 5) and June data (Fig. 6),
are shown in Fig. 7 and Table 5. The observed and predicted
values of SSIE based on July data are shown in Fig. 8c. The
overall explained variance of the July-based model, over the
calibration (validation) period, is 94 % (81 %), and the corre-
lation coefficient between the observed and forecasted SSIE
values is r = 0.97 (r = 0.90) (99.9 % significance level). The
July-based model exhibits also very good skill and shows
slight improvements compared to the May- and June-based
models: NSE= 0.94 (0.78) and d = 0.98 (0.93).

4 Discussion

The results of this study demonstrate that statistically based
models are able to predict SSIE with high skill, if the accurate
drivers and their regional localizations (herein stable regions)
are identified via various statistical techniques. In this paper,
our analysis was focused on a single month (September), but
the same methodology has been be successfully applied also
for other months/seasons and also for the Antarctic region
(Ionita et al., 2018).

Our results highlight the potential for skillful prediction
of SSIE, both at pan-Arctic level as well as for ESS, based
on large-scale drivers from stable regions. The ocean drivers
(OHC, TT100 and SST) from the identified stable regions
are strongly related to the Atlantic inflow or to the SST vari-
ability over regions strongly influenced by decadal modes of
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Figure 2. Stability map of the correlation between September sea ice extent and (a) TT Jun, (b) USURF Jun and (c) VSURF Jun. Regions
where the correlation is stable, positive and significant for at least 80 % of the 21-year windows are shaded with dark red (95 %), red (90 %),
orange (85 %) and yellow (80 %). The corresponding regions where the correlation is stable, but negative, are shaded with dark blue (95 %),
blue (90 %), green (85 %) and light green (80 %). The black boxes indicate the regions used for the September sea ice extent at the end of
June in addition to the variables of May.

Figure 3. Stability map of the correlation between September sea ice extent and (a) SLP Jul, (b) PWC Jul, (c) TT Jul and (d) USURF Jul.
Regions where the correlation is stable, positive and significant for at least 80% of the 21-year windows are shaded with dark red (95 %), red
(90 %), orange (85 %) and yellow (80 %). The corresponding regions where the correlation is stable, but negative, are shaded with dark blue
(95 %), blue (90 %), green (85 %) and light green (80 %). The black boxes indicate the regions used for the September sea ice extent at the
end of July in addition to the variables of May and June.

variability (e.g., Pacific Decadal Oscillation – PDO – in the
central and north Pacific) to multidecadal modes of variabil-
ity (e.g., Atlantic Multidecadal Oscillation – AMO – in the
Atlantic Ocean region). The Atlantic inflow, AMO and PDO
play a significant role in driving the Arctic sea ice variability
(Polyakov et al., 2017; Miles et al., 2014; Ionita et al., 2016;
Screen and Francis, 2016). For example, the North Atlantic
might act as a source for the OHC anomaly identified over the
Kara Sea, Laptev Sea and ESS (Figs. 1 and 5), thus contribut-

ing to the skill of our forecast. The OHC anomalies form the
North Atlantic flow into the Arctic basin, via advection, and
affect the sea ice distribution (Polyakov et al., 2017; Ono et
al., 2018). In a recent study, Yu et al. (2017) have shown that
the leading mode of variability of global sea ice concentra-
tion is positively correlated with the AMO and negatively
correlated with the PDO. Furthermore, two-thirds of the to-
tal global sea ice trend can be explained by a combination of
these two modes of variability. Superimposed on the interan-
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Table 3. Variables retained for the September pan-Arctic sea ice extent forecast (black boxes in Figs. 1–3). Single months are abbreviated
with the first three letters of the month.

May data June data July data

Persistence SIE Mar SIE Mar SIE Mar

Ocean variables
OHC SON OHC SON OHC SON
SST MAM SST MAM SST MAM
AMO – L4 AMO – L4 AMO – L4

Atmospheric variables

SLP May SLP May SLP May
SLP Jul

VSURF MAM VSURF MAM VSURF MAM
VSURF Jun VSURF Jun
USURF Jun USURF Jun

USURF Jul
PWC Apr PWC Apr PWC Apr

PWC Jul
TT Jun TT Jun

TT Jul

Figure 4. Observed (black) and predicted (red) September sea ice extent detrended anomalies over the period 1979–2017 based on (a) May,
(b) June and (c) July predictors from the stable regions. The shaded area represents the 95 % uncertainty bounds.
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Figure 5. Stability map of the correlation between East Siberian September sea ice extent and (a) OT100 annual (L4), (b) OT100 annual (L1),
(c) SST MAM, (d) TT May, (e) DW MAM, (f) PWC May, (g) SLP Jan and (h) VSURF MAM. Regions where the correlation is stable,
positive and significant for at least 80 % of the 21-year windows are shaded with dark red (95 %), red (90 %), orange (85 %) and yellow
(80 %). The corresponding regions where the correlation is stable, but negative, are shaded with dark blue (95 %), blue (90 %), green (85 %)
and light green (80 %). The black boxes indicate the regions used for the September sea ice extent at the end of May.

Figure 6. Stability map of the correlation between East Siberian September sea ice extent and TT Jun. Regions where the correlation is
stable, positive and significant for at least 80 % of the 21-year windows are shaded with dark red (95 %), red (90 %), orange (85 %) and
yellow (80 %). The corresponding regions where the correlation is stable, but negative, are shaded with dark blue (95 %), blue (90 %), green
(85 %) and light green (80 %). The black boxes indicate the regions used for the September sea ice extent at the end of June in addition to
the variables of May.
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Figure 7. Stability map of the correlation between East Siberian September sea ice extent and (a) SST Jul, (b) TT Jul, (c) PWC Jul and
(d) VSURF Jul. Regions where the correlation is stable, positive and significant for at least 80 % of the 21-year windows are shaded with
dark red (95 %), red (90 %), orange (85 %) and yellow (80 %). The corresponding regions where the correlation is stable, but negative, are
shaded with dark blue (95 %), blue (90 %), green (85 %) and light green (80 %). The black boxes indicate the regions used for the September
sea ice extent at the end of July in addition to the variables of May and June.

Figure 8. Observed (black) and predicted (red) East Siberian sea ice extent detrended anomalies over the period 1979–2017 based on
(a) May, (b) June and (c) July predictors from the stable regions. The shaded area represents the 95 % uncertainty bounds.
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Table 4. The correlation coefficients between the detrended pan-
Arctic September sea ice extent and the regional September sea
ice extent. A detailed description regarding the definition of each
region is given here: ftp://sidads.colorado.edu/DATASETS/NOAA/
G02135/seaice_analysis/ (last access: 10 May 2018).

Lag 4 Lag 3 Lag 2 Lag 1 Lag 0

Baffin 0.07 0.09 0.34 0.40 0.39
Barents 0.20 0.16 0.27 0.13 0.14
Beaufort 0.15 0.24 0.37 0.51 0.60
Bering −0.30 −0.02 0.14 0.00 −0.04
Canadian 0.07 −0.16 0.01 0.52 0.49
Chukchi −0.26 0.03 0.09 0.53 0.60
East Siberian 0.19 0.24 0.39 0.61 0.72
Greenland 0.04 0.06 0.22 0.16 −0.07
Hudson 0.44 0.51 0.46 0.38 0.47
Kara 0.09 −0.03 0.05 −0.08 −0.07
Laptev 0.34 0.32 0.40 0.37 0.53

nual variability, the temperature and salinity of the Atlantic
inflows to the Arctic Ocean show also pronounced decadal
to multidecadal variability (Zhang, 2015). This aligns with
the concept of different previous studies, which suggest that
the decreasing trend in the Arctic sea ice is partially driven
by AMO (Park and Latif, 2008; Lindsay et al., 2005; Ding
et al., 2014; Yu et al., 2017). Moreover, starting at the begin-
ning of 1990s, the AMO switched to a positive phase, at the
same time when the Arctic sea ice extent started its abrupt
decline. Thus, in this study, we have tested previous years’
AMO index as a potential driver of the Arctic sea ice extent.

The stability maps based on the predictors related to the
atmospheric variables (Figs. 1–3) show significant and sta-
ble correlations with regions restricted to the Arctic basin,
indicating a very regional connection between the Septem-
ber sea ice variability and large-scale atmospheric circula-
tion. The state of the Arctic SSIE depends both on the state
of the ice in spring and on the atmospheric condition during
summer (Ding et al., 2017). In this respect, the precipitable
water content and air temperature in spring and early sum-
mer were found to show significant predictive skill for the
SSIE both at pan-Arctic as well as regional levels. This is
also in agreement with previous studies (Kapsch et al., 2013,
2014) which have shown a significantly increased cloudiness
and humidity over the Arctic region in spring, thus accelerat-
ing the sea ice retreat in the upcoming summer, via enhanced
longwave radiation.

Overall, such a methodology can be valuable also for the
modeling community. If the coupled models, used for fore-
casting purposes, face problems to simulate the ocean and/or
the climate background over the areas that play a signifi-
cant role in driving the SSIE variability (stable regions), one
expects a relatively small forecast skill. The opposite case
is also valid: a good representation of the key regions that
drive SSIE could imply a good forecast skill. For example,

Parkinson et al. (2006) determined that many climate mod-
els tend to simulate more winter sea ice in the Barents Sea
compared to observations. One hypothesis for this overesti-
mation is that the models underestimate the heat content in
the Atlantic basin (which has proven to be one of the main
contributors for a skillful prediction for SSIE in our model).
By using a simple and computationally inexpensive statisti-
cal approach, one can anticipate more than 80 % of SSIE up
to 4 months in advance, based on the antecedent atmospheric
and oceanic conditions over stable regions. Moreover, our
statistical model is able to properly reproduce the years with
extreme low/high sea ice extent, both at pan-Arctic level as
well as at regional scale (e.g., 2007 and 2012 – low SSIE,
and 1996 – high SSIE; see Figs. 4 and 8). The predictability
of these extreme years poses big challenges for the sea ice
prediction community (Hamilton and Stroeve, 2016).

For example, one of the most unpredictable years
was 2012. Most of the models (statistical and dynamical)
were unable to properly forecast the extremely low value
of the sea ice extent in September 2012 (Stroeve et al.,
2014). Overall, the statistical predictions came closer to the
unexpected low sea ice extent in September 2012 than the
dynamical-based predictions. In this respect, our statistical
model was able to capture the overall decline in the SSIE
and we forecasted the lowest sea ice extent since the obser-
vational period (Fig. 4). Nevertheless, in terms of amplitude,
our forecast has underestimated the observed values (Fig. 4).
One of the reasons for this underestimation could come from
the fact that in August 2012 a strong storm prevailed over the
Arctic basin, which triggered extreme sea ice melt by bring-
ing heat and moisture from the south towards the central Arc-
tic (Parkinson and Comiso, 2013). Another potential trigger
of the extreme sea ice melt in 2012 might be a combination of
extremely thin sea ice pack and increased upward ocean heat
transport, which created conditions that made the sea ice par-
ticularly vulnerable to storms (Zhang et al., 2013). The storm
in August 2012 allowed a large amount of oceanic heat to be
mixed up to the surface, thus enhancing the sea ice melt. Be-
cause the atmosphere is mostly unpredictable beyond 1 or
2 weeks, we were not able to accurately predict, in terms of
amplitude, the sea ice conditions that developed because of
the Arctic storm in August 2012.

Another challenge for the sea ice community was the
predictability of SSIE in 2013. Sea ice extent in Septem-
ber 2013 was characterized by a revival compared to the
low values recorded in September 2012 (SSIE in 2013
was 1.69 million km2 above the record minimum extent in
September 2012). Most of the models, involved in the Sea
Ice Prediction Network (SIPN), have underestimated the
September 2013 sea ice extent, despite the fact that this was
not an extreme low sea ice year like 2012. The observed
September 2013 sea ice extent lied outside the intervals given
with 13 out of 16 predictions, but the modeling methods per-
formed better than the statistical ones (Stroeve et al., 2014).
For September 2013, our statistical model performed almost

www.earth-syst-dynam.net/10/189/2019/ Earth Syst. Dynam., 10, 189–203, 2019

ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/seaice_analysis/
ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/seaice_analysis/


200 M. Ionita et al.: September Arctic sea ice minimum prediction – a new skillful statistical approach

Table 5. Variables retained for the September East Siberian sea (ESS) ice extent forecast (black boxes in Figs. 5–7). Seasonal averages are
indicated as spring MAM (March, April, May); single months are abbreviated with the first three letters of the month.

May data June data July data

Persistence
SIE Jun SIE Jun

SIE Jul

Ocean variables
OT100 – L4, L1 OT100 – L4, L1 OT100 – L4, L1
SST MAM SST MAM SST MAM

Atmospheric variables

SLP Jan SLP Jan SLP Jan
VSURF MAM VSURF MAM VSURF MAM

VSURF Jul
PWC May PWC May PWC May

PWC Jul
TT May TT May TT May

TT Jun TT Jun
TT Jul

DW MAM DW MAM DW MAM

perfectly, giving one of the best predictions (in terms of am-
plitude) over the validation period. The revival of the sea ice
extent in 2013 was due to a combination of different factors:
a colder summer over the Arctic basin, compared to 2012,
and no storms prevailing throughout the summer months;
less winter clouds in January–February 2013, which resulted
in more strongly negative surface radiation budget (Liu and
Key, 2014); later melt onset, intermittent freezing events and
an earlier fall freeze-up (Wang et al., 2016), among others.
Summer 2013 was characterized by an unusual low pressure
system over much of the Arctic Ocean, which acted as a lim-
iting factor for the heat transport from the south. Both the
SLP and air temperature over the Arctic basin were part of
our final predictors for the sea ice extent in 2013 (Figs. 2
and 3). As such, the accurate predictions based on our sta-
tistical model for 2013 may arise from the fact that no ex-
treme weather events were occurring throughout the summer
months over the Arctic region. In addition, we had persistent
negative temperature anomalies and a long-lasting low pres-
sure system prevailing in June and July over the Arctic basin,
variables which were used in our forecast model. A high/low
skill in the predictability of extreme September sea ice can
be the result of extreme spring preconditioning (e.g., very
low ice thickness) and/or the results of extremely anomalous
summer weather systems, independent of the spring precon-
ditioning. In observation, not all extremes are the results of
the same forcing, thus implying that different extreme events
will have a different level of predictability.

5 Conclusions

In this study, we have developed a statistical method based
on different oceanic and atmospheric variables to estimate
the monthly signal and variability of the Arctic sea ice extent.
Based on stepwise multiregression analysis, optimal predic-

tors are identified in terms of stability maps to forecast SSIE
on a pan-Arctic or regional scale. We have demonstrated
that our well-established statistical approach can be used as
a promising tool to improve the skill of sea ice extent pre-
diction. In the future, the same methodology will be applied
to test the potential predictability, up to 2 years ahead, by
taking into account variables with long-term memory (e.g.,
heat content and water temperature integrated over different
depths) for the whole Arctic. For other regions prone to ex-
treme decrease in the sea ice extent (e.g., Chukchi Sea, Beau-
fort Sea, Barents Sea), as well as for Antarctica, the method
will also be adopted. Finally, since the concept can be used as
an early warning system for September sea ice extent, both
at pan-Arctic level as well as regionally, the potential envi-
ronmental and economic benefits can be very high.
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