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Abstract. The current state of development and the prospects of the regional MiKlip decadal prediction system
for Europe are analysed. The MiKlip regional system consists of two 10-member hindcast ensembles computed
with the global coupled model MPI-ESM-LR downscaled for the European region with COSMO-CLM to a
horizontal resolution of 0.22◦ (∼ 25 km). Prediction skills are computed for temperature, precipitation, and wind
speed using E-OBS and an ERA-Interim-driven COSMO-CLM simulation as verification datasets. Focus is
given to the eight European PRUDENCE regions and to lead years 1–5 after initialization. Evidence of the
general potential for regional decadal predictability for all three variables is provided. For example, the initialized
hindcasts outperform the uninitialized historical runs for some key regions in Europe, particularly in southern
Europe. However, forecast skill is not detected in all cases, but it depends on the variable, the region, and the
hindcast generation. A comparison of the downscaled hindcasts with the global MPI-ESM-LR runs reveals that
the MiKlip prediction system may distinctly benefit from regionalization, in particular for parts of southern
Europe and for Scandinavia. The forecast accuracy of the MiKlip ensemble is systematically enhanced when the
ensemble size is increased stepwise, and 10 members is found to be suitable for decadal predictions. This result
is valid for all variables and European regions in both the global and regional MiKlip ensemble. The present
results are encouraging for the development of a regional decadal prediction system.
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1 Introduction

In recent years, interest in climate predictions on timescales
from 1 year up to a decade has increased in the climate sci-
ence community, since this time span falls within the plan-
ning horizon for a wide variety of decision makers (Meehl
et al., 2009, 2014). A large ensemble of initialized decadal
hindcasts has been consolidated in a component of the Cou-
pled Model Intercomparison Project Phase 5 (CMIP5; Taylor
et al., 2012), and the number of studies aiming at decadal pre-
dictions has strongly increased in recent years (for a review
see Meehl et al., 2014). Typically, the North Atlantic is a key
region for decadal predictions and forecast skill is found for
various quantities such as heat content and sea surface tem-
perature (e.g. Kröger et al., 2012; Yeager et al., 2012), CO2
uptake (Li et al., 2016), and integrated quantities such as the
sub-polar gyre (Matei et al., 2012; Yeager et al., 2012; Rob-
son et al., 2013). Recent studies suggest that in particular the
Atlantic multi-decadal variability, which is strongly linked to
the Atlantic Meridional Overturning Circulation (AMOC), is
a major source of decadal predictability (Smith et al., 2012;
Pohlmann et al., 2013a). As such low-frequency variability
patterns may affect the climate globally, perennial means of
meteorological parameters might be predictable several years
ahead. Numerous studies focus on primary meteorological
parameters on the global scale, in particular surface tempera-
ture (e.g. Chikamoto et al., 2012; Doblas-Reyes et al., 2013;
Ho et al., 2013; Corti et al., 2015). Comparatively few studies
analyse storm tracks (Kruschke et al., 2014, 2016), Atlantic
tropical cyclones (Dunestone et al., 2011), intense or extreme
events (e.g. Benestad and Mezghani, 2015; Eade et al., 2012),
or zoom into a certain region of the world (e.g. Guemas et al.,
2015).

In the German research consortium MiKlip (http://www.
fona-miklip.de, last access: December 2018), a global
decadal prediction system was developed based on the Max
Planck Institute Earth system Model (MPI-ESM; for an
overview see Marotzke et al., 2016). Within the project, sev-
eral hindcast generations were produced. The first two are
discussed in this paper. The skill of the MiKlip System for
decadal predictions was analysed in a wide variety of re-
cent studies. For example, Müller et al. (2012) investigated
global surface air temperature in the first generation of the
global MiKlip system (baseline0, which was a contribution to
CMIP5) and found that the initialized hindcasts have predic-
tive skill over the North Atlantic region, while negative skill
scores are identified for the tropics. A modified initialization
in the second global MiKlip system generation (baseline1)
considerably improves the performance in the tropics, but
brings only limited skill improvement over the North Atlantic
and Europe (Pohlmann et al., 2013b). Kruschke et al. (2014)
identified significant positive skill scores for cyclone fre-
quency over the central North Atlantic in the global baseline0
and baseline1 generations, while no significant skill was de-
tected over the eastern North Atlantic and Europe. Further-

more, Kadow et al. (2015) evaluated the global MiKlip sys-
tem with respect to temperature and precipitation, giving evi-
dence that an enlargement of the hindcast ensemble generally
leads to an improvement of the prediction system.

The MiKlip consortium is to our best knowledge the first
institution worldwide which has established a decadal pre-
diction system for the regional scale. With this aim, con-
siderable efforts were made to downscale the global MPI-
ESM hindcasts by developing and/or employing different re-
gionalization techniques. After the second project phase, an
exceptionally large ensemble was regionalized by dynami-
cal downscaling with regional climate models. Although be-
ing computationally expensive, dynamical downscaling has
many advantages compared to other downscaling methods.
For example, all output variables are physically consistent
in dynamically downscaled model runs, which is particularly
important when using decadal predictions for impact mod-
elling, hydrological simulations, or user-oriented parameters.
Previous experiences reveal that a skill for regional decadal
predictions exists but that the interpretation of the results
is quite complex due to the non-linear relationship to the
global prediction skill. For example, Mieruch et al. (2014)
found rather heterogeneous predictive skill for precipitation
and temperature over Europe in the baseline0 generation. The
skill differs over space, season, variable, and lead time af-
ter initialization. However, a general feature is an improved
model spread for precipitation in the downscaled hindcasts
when compared to their global counterparts. A potential for
predicting regional peak winds and wind energy potentials
over central Europe several years ahead was identified in
Haas et al. (2016) and Moemken et al. (2016). Specifically,
they found highest skill scores for the first years after ini-
tialization. All the individual studies analysing the MiKlip
prediction system consider different ensembles, variables,
lead times, skill metrics, and/or downscaling and data pre-
processing methods. Therefore, it is difficult to draw gen-
eral conclusions regarding skill over Europe in the MiKlip
decadal prediction system. In particular, an overall statement
for the benefit of regionalization and thus for the prospects of
a regional decadal prediction system is hardly possible so far.
This motivated us to analyse both the global and the down-
scaled MiKlip ensemble with respect to different issues.

In this study, the decadal predictive skill for temperature,
precipitation, and wind speed over Europe is analysed for
the baseline0 and baseline1 generations of the MiKlip sys-
tem. With this aim, we used the same methodologies for all
three variables to ensure comparability. Global MPI-ESM
and downscaled hindcast ensembles are considered to ad-
dress the following four key questions:

– Is there a potential for skilful regional decadal predic-
tions in Europe?

– Does regional downscaling provide an added value for
decadal predictions?
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– How does the regional decadal predictive skill depend
on the ensemble size?

– How does the number of initializations affect the skill
estimates?

The datasets used in this study are described in Sect. 2, fol-
lowed by the methodologies for data pre-processing and skill
analysis in Sect. 3. The results for the four key questions are
shown in Sect. 4. A summary and discussion, as well as an
outlook for future work, are given in Sect. 5.

2 Data

The analysed global hindcasts were simulated with the cou-
pled model MPI-ESM in low resolution (MPI-ESM-LR;
Giorgetta et al., 2013). Its atmospheric component is based
on the ECHAM6 model (Stevens et al., 2013) with a hori-
zontal resolution of T63 and 47 vertical levels, which is cou-
pled to the MPI-OM (Jungclaus et al., 2013) with a hori-
zontal resolution of 1.5◦ and 40 vertical levels. Two hind-
cast generations are considered here, both computed with the
MPI-ESM-LR but with different initialization strategies. The
first generation (baseline0; Müller et al., 2012; Matei et al.,
2012) is initialized with oceanic conditions from an experi-
ment where surface fluxes from the NCEP/NOAA reanalysis
(Kalnay et al., 1996) were assimilated into the ocean model
MPI-OM. The anomalies of ocean temperature and salinity
from this experiment were then used to initialize the decadal
hindcasts in the coupled model. For the second generation
(baseline1; Pohlmann et al., 2013b), temperature and salin-
ity anomalies from the ocean reanalysis system 4 (ORAS4;
Balmaseda et al., 2013) are used instead, together with a full-
field 3-D atmospheric initialization using fields from ERA40
(Uppala et al., 2005) and ERA-Interim (Dee et al., 2011). For
both generations, yearly initialized hindcasts are available,
each of them comprising a 10-year period. For each starting
date, an ensemble was generated using a 1-day lagged ini-
tialization from the assimilation experiments (cf. Marotzke et
al., 2016 for more details). For baseline0 there are 10 mem-
bers for each fifth year and 3 members for the other years,
whereas baseline1 provides 10 members for each starting
year. Here, we use hindcasts of five starting dates (1 Jan-
uary 1961, 1971, 1981, 1991, and 2001; hereafter referred
to as dec1960, dec1970, dec1980, dec1990, and dec2000) to
cover the whole period from 1961 to 2010. This resulted in
an ensemble of 50 global hindcasts per generation (baseline0
and baseline1; hereafter MPI_b0 and MPI_b1).

The global hindcasts are dynamically downscaled to the
EURO-CORDEX domain (Giorgi et al., 2009; cf. Fig. 1) at a
horizontal grid resolution of 0.22◦ using the mesoscale non-
hydrostatic regional climate model COSMO-CLM (CCLM;
Rockel et al., 2008) on a rotated grid. The model ver-
sion COSMO4.8-clm17 is employed. By using the MPI-
ESM-LR ensemble as driving data, the global “initial con-

Figure 1. CCLM modelling domain (EURO-CORDEX domain):
Model orography and PRUDENCE regions. 1: British Isles, BI;
2: Iberian Peninsula, IP; 3: France, FR; 4: Mid-Europe, ME;
5: Scandinavia, SC; 6: Alps, AL; 7: Mediterranean, MD; and
8: eastern Europe, EA.

dition” perturbation strategy is simply passed to the re-
gional model. Hence, the downscaled hindcasts also inherit
the applied anomaly initialization of the global ensembles.
The downscaling experiment includes hindcasts for dec1960,
dec1970, dec1980, dec1990, and dec2000, with 10 members
per decade (hereafter CCLM_b0 and CCLM_b1). The re-
gional ensembles therefore consist of the same time series
like the global ensembles MPI_b0 and MPI_b1.

We evaluate the performance of both the global MPI-
ESM and the regional CCLM hindcasts with the following
datasets. For temperature and precipitation, we consider the
observational dataset E-OBS (Haylock et al., 2008) based on
the ECA & D (European Climate Assessment & Dataset;
http://ecad.eu/, last access: September 2016) at a regular
0.25◦× 0.25◦ grid. As no gridded dataset is available for
wind, a CCLM simulation forced with boundary conditions
from ERA40 and ERA-Interim is employed as verification
dataset for wind speed. For this reanalysis-driven simulation,
CCLM is applied in the same model set-up as for the region-
alization of the global hindcast ensemble (see above).

In this study, we want to quantify if the initialization with
observed climate states improves the performance of decadal
predictions. To address this issue, uninitialized historical
CMIP5 runs are usually considered as reference dataset (see
also Sect. 3.2). With this aim, a 10-member ensemble of
uninitialized MPI-ESM-LR historical runs started from a
pre-industrial control simulation are used, which use ob-
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served natural and anthropogenic forcings (e.g. aerosol and
greenhouse gas concentrations among others) for the pe-
riod 1850–2005 (e.g. Müller et al., 2012).

3 Methods

3.1 Data processing

All datasets considered in this study are pre-processed in an
analogous manner to enable a direct comparison. First, all
data are bilinear interpolated to the grid used for the E-OBS
data (0.25◦× 0.25◦ resolution). At each grid point, monthly
anomaly time series are computed by subtracting the long-
term means for the period 1961–2010 from the interpolated
raw datasets. Finally, annual values are derived and multi-
annual means for lead years 1–5 are built for further evalua-
tion.

Following the suggestion of Goddard et al. (2013), the
skill analysis is partly performed for spatial means. Spatial
averaging of the anomaly time series is performed for eight
PRUDENCE regions over Europe (see Fig. 1; Christensen
and Christensen, 2007). Note that we only used grid points
over land surfaces for the spatial means as E-OBS data are
not available over the oceans. Additionally, we calculated the
predictive skill on the basis of all individual grid points for
specific analysis.

3.2 Skill metrics

The following metrics are used to evaluate the perfor-
mance of the global and regional hindcast ensembles and
to address the four key questions: the mean squared er-
ror skill score (MSESS) and the anomaly correlation coef-
ficient (ACC), which are both measures for the forecast ac-
curacy. The skill metrics are applied to the pre-processed
time series described in Sect. 3.1 and are computed for multi-
annual means for lead time years 1–5 after initialization. Re-
cent studies analysing the MiKlip decadal prediction system
demonstrated that the MiKlip ensemble performs best for the
first years after initialization for a wide range of variables,
while the skill diminishes for longer forecast periods. For
example, Müller et al. (2012) found highest skill scores for
years 1–4 and 2–5 for annual mean surface temperature for
both the North Atlantic region and global means. The same is
true for annual wind speed and wind energy potentials over
central Europe, for which skilful predictions are mainly re-
stricted to the first years after initialization (years 1–4), while
negative skill scores are found for longer lead time periods
(Moemken et al., 2016). Kruschke et al. (2014) provided ev-
idence that the prediction skill for winter cyclones over the
North Atlantic region is best for years 2–5 and reduced for
longer time periods. Following the recommendation by God-
dard et al. (2013), we focus, in the following, on the lead time
years 1–5 after initialization.

The deterministic MSESS (Murphy, 1988) is defined as

MSESS(HRO)= 1−
MSEhind

MSEref
(1)

with

MSEhind =
1
N

N∑
i=1

(
Hi −Oi

)2
and

MSEref =
1
N

N∑
i=1

(
Ri −Oi

)2
, (2)

where i = 1, . . . , N is the time index, MSEhind is the mean
squared error (MSE) between the ensemble mean of the
dynamical downscaled hindcasts (Hi) and the verification
data (Oi), and MSEref is the mean squared error of a ref-
erence dataset (Ri). In this study, the uninitialized historical
simulations, the climatology, or the global initialized hind-
casts are used as reference. A MSESS could be between mi-
nus infinity and one, with positive MSESS meaning that the
hindcasts are closer to the verification dataset than the refer-
ence, indicating that the initialization and downscaling lead
to higher accuracy in predicting observed values.

Following Murphy (1988) and given that anomalies are
used (as in this study), the MSESS with the climatology as
reference (i.e. Ri ≡O) can be decomposed as follows:

MSESS(H,O,O)= r2
H,O−

(
rH,O−

SH

SO

)2

, (3)

where rH,O is the correlation between the hindcasts (Hi) and
the verification data (Oi), and SH and SO are the sample vari-
ances of the simulation ensembles and the observations, re-
spectively. The second term is the conditional bias.

CB=
(

rH,O−
SH

SO

)
. (4)

In the case that another reference is applied, the decomposi-
tion is as follows:

MSESS(H,R,O)=

r2
H,O−

[
rH,O−

SH
SO

]2
− r2

R,O+
[
rR,O−

SR
SO

]2

1− r2
R,O+

[
rR,O−

SR
SO

]2 (5)

or

MSESS(H,R,O)=

MSESS(H,O,O)−MSESS(R,O,O)

1−MSESS(R,O,O)
, (6)

where MSESS(H , R, O) denotes the skill score of a
hindcast H to a reference R given the observations O.
MSESS(H , O, O) and MSESS(R, O, O) are the respective
skill scores against the climatology.
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Hence, MSESS depends on the conditional bias, as well
as on the correlation. It is smaller than the correlation in the
case that there is a conditional bias, for which the optimal
value is 0. CB depends on the balance between correlation
and the ratio of the standard deviation between the ensemble
and the observation. The improvement or added value of CB
is calculated according to Kadow et al. (2015) as

CBAV =

∣∣∣∣rref,obs−

(
Sref

SO

)∣∣∣∣− ∣∣∣∣rhind,obs−

(
Shind

SO

)∣∣∣∣ . (7)

The correlation or ACC (anomaly correlation coefficient;
e.g. Wilks, 2011) is computed as the Pearson correlation be-
tween the ensemble mean of the hindcasts at a certain loca-
tion i and the corresponding observations (Obs):

ACCi =
1
N

∑
t

HtOt

SHSO
, (8)

where t = 1, . . . , N is the time index. The ACC quantifies
the accuracy of the predictions only in terms of the tempo-
ral course, while it is independent from the variance of the
target variable and from the mean bias. To compare the per-
formance of the hindcasts and of the uninitialized historical
runs, we compute the difference of the ACC of the hindcasts
minus the ACC of the historical runs for several issues (here-
after delta_ACC).

The significance of the skill scores is determined by using
a bootstrapping approach at the 95 % level (Kadow et al.,
2015) and a t test of the respective distributions.

4 Results

4.1 Is there a potential for skilful regional decadal
predictions in Europe?

In this section, we address the first key question and anal-
yse the general potential for skilful regional decadal predic-
tions over Europe. Figure 2 shows MSESS plots for tempera-
ture, precipitation, and surface wind speed in CCLM_b0 and
CCLM_b1 with the climatology as reference. Not surpris-
ingly, the MSESS is positive for most of Europe for temper-
ature. It is significant for most regions in western Europe in
CCLM_b0 and large parts of southern Europe in CCLM_b1
(Fig. 2a and b). This is due to the strong positive trend in
the observed temperature, which is predicted by the hindcasts
but not captured by the climatology. Deviations between both
ensembles are larger for precipitation (Fig. 2c and d), where
the MSESS fields are distinctly patchier when compared to
temperature (Fig. 2a and b). While positive and significant
skill scores are found over large parts of western Europe in
CCLM_b1 (Fig. 2d), MSESS values are mostly negative over
this region in CCLM_b0 (Fig. 2c). For wind speed (Fig. 2e
and f), a positive MSESS is found only for northern Europe
and CCLM_b0, where skill scores are often significant. As at

the same time negative skill scores are found for other Euro-
pean regions in both ensembles, the climatology is generally
closer to the observations than the hindcasts. In this respect,
we have analysed the respective spatial mean wind speed
time series for the Iberian Peninsula (Prudence region 2) and
CCLM_b0. The wind speed shows a slight negative trend in
CCLM_b0, while the trend is slightly positive for the obser-
vational dataset (not shown). At the same time, the decadal
variability for wind speed is quite small over this region in
all datasets (it ranges from 0.02 to −0.02 in CCLM_b0 and
E-OBS). Hence, the deviation of the climatology from the
observations, and thus its MSE, is generally small in this re-
gion, resulting in a negative MSESS when using the clima-
tology as reference (see also Eq. 3 for MSESS in Sect. 3.2).

A different picture is revealed when using the uninitialized
historical runs as reference dataset for the MSESS computa-
tion (Fig. 3). For temperature (Fig. 3a and b), positive skill
scores are found in both ensembles over Scandinavia and for
southeastern Europe, and at some grid points this prediction
skill is significant. A stripe of negative values occurs over the
British Isles and central Europe. The analysis of the time se-
ries for Mid-Europe (spatial mean over Prudence region 4)
reveals that this negative skill mainly results from a strong
temperature increase from dec1960 to dec1970 in the obser-
vations, while CCLM_b0 and CCLM_b1 depict a decrease
in temperature (not shown), which in fact was observed in
southern Europe for instance. As a consequence, the temper-
ature in the hindcasts has larger deviations than the unini-
tialized simulations compared to the observations during the
first half of the considered period, but agree well to the ob-
servations from dec1980 onwards. The largest deviations be-
tween CCLM_b0 and CCLM_b1 are found for Iberia, parts
of southern France, and Italy, where the MSESS is positive
for CCLM_b1 but neutral to negative for CCLM_b0.

Again, deviations in the MSESS fields between both en-
sembles are larger for precipitation (Fig. 3c and d), reflecting
the local character of rainfall. Both ensembles show positive
and partly significant MSESS values for regions in Scandi-
navia and eastern Europe, and to a lesser extent for Iberia
and the British Isles (Fig. 3c and d). In CCLM_b1, predictive
skill is also identified over western central Europe. Thus for
CCLM_b1 positive skill is found for larger areas indicating
an added value of the improved initialization procedure in
baseline1 compared to baseline0.

Regarding wind speed, the predictive skill in CCLM_b0
(Fig. 3e) shows high and significant MSESS values over
Scandinavia, Iberia, southern Italy, and along the coasts of
the North Sea and Baltic Sea, while negative values are
found, for example, over parts of France, southern Germany,
and the Alpine region. In CCLM_b1, the MSESS depicts
positive values over most of western and central Europe,
while negative values are now identified along the eastern
coast of the Baltic Sea (Fig. 3f). Overall the predictive skill
of CCLM_b0 is slightly higher and affects a larger area, in-
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Figure 2. Spatial distribution of the MSESS for the multi-annual mean anomalies of lead years 1–5 for (a) temperature in CCLM_b0,
(b) temperature in CCLM_b1, (c) precipitation in CCLM_b0, (d) precipitation in CCLM_b1, (e) wind speed in CCLM_b0, and (f) wind speed
in CCLM_b1. As reference dataset we have used the climatology. The black dots indicate significant skill at the 95 % level (bootstrapping).

dicating that the changes in the initialization method do not
improve the results for wind speed.

We conclude that in terms of the MSESS accuracy there
generally is a potential for skilful decadal predictions over
Europe in the regional MiKlip ensembles. However, the skill
pattern depends on the region and the variable. For individual
regions, the initialization leads to an added value for accurate
(retrospective) forecasts several years ahead, while for some

regions the uninitialized historical runs deliver better predic-
tions. Also the discrepancies between the two hindcast gener-
ations (CCLM_b0 and CCLM_b1) are rather heterogeneous.
While for temperature we only found a slight shift in the pat-
tern due to the different initialization methods, discrepancies
can be large for precipitation and wind speed depending on
the region.
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Figure 3. Spatial distribution of the MSESS for the multi-annual mean anomalies of lead years 1–5 for (a) temperature in CCLM_b0,
(b) temperature in CCLM_b1, (c) precipitation in CCLM_b0, (d) precipitation in CCLM_b1, (e) wind speed in CCLM_b0, and (f) wind
speed in CCLM_b1. As reference dataset we have used the uninitialized historical ensemble. The black dots indicate significant skill at the
95 % level (bootstrapping).

4.2 Does regional downscaling provide an added value
for decadal predictions?

Recent studies document that the application of regional cli-
mate models may improve climate simulations, in particu-
lar over complex terrain (Berg et al., 2013; Feldmann et al.,
2013; Hackenbruch et al., 2016). This is mainly due to a
more realistic representation of the topography (e.g. moun-

tain ranges or coastlines) in the regional climate models
(RCMs) compared to global-scale general circulation models
(GCMs). In this section, we analyse whether the downscaling
with a regional climate model also leads to an added value
for decadal predictions over Europe. With this aim, we use
MPI_b0 and MPI_b1 as reference datasets for the MSESS
shown in Fig. 4 (see also Sect. 3.2).
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Figure 4. Spatial distribution of the MSESS for the multi-annual mean anomalies of lead years 1–5 for (a) temperature in CCLM_b0,
(b) temperature in CCLM_b1, (c) precipitation in CCLM_b0, (d) precipitation in CCLM_b1, (e) wind speed in CCLM_b0, and (f) wind
speed in CCLM_b1. As reference dataset we have used the respective global MPI data. The black dots indicate significant skill at the 95 %
level (bootstrapping).

Generally, significant improvements in the prediction skill
by dynamical downscaling are restricted to limited geograph-
ical areas, and they strongly depend on the variable. For tem-
perature a significant added value of downscaling is found
over Scandinavia and southeast Europe in CCLM_b0, and
over southeast Europe and the British Isles in CCLM_b1
(Fig. 4a and b). Therefore, the regionalization typically pro-

vides an improvement in regions where the global hindcasts
show mostly medium to lower skill. In some regions with
already high skill in the MPI-ESM hindcasts there is no im-
provement by the downscaling. This includes, for example,
an area from the British Isles over France to Germany in
baseline0 and regions along the western Mediterranean coast
in baseline1. However, the global model outperforms the re-
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Table 1. MSESS, ACC, and conditional bias (CB) for the CCLM
ensembles (left half) and added value compared to the global MPI
ensembles (right half) for b0 (upper half) and b1 (lower half) for
temperature averaged over the eight Prudence regions (cf. Fig. 1)
and the whole of Europe (EU). In the left half, bold (italic) numbers
represent MSESS values above +0.3 (below −0.3), ACC values
above+0.4 (below−0.4), and CB values between±0.2 are marked
in bold and beyond ±0.3 in italic. In the right half, bold (italic)
numbers corresponds to a distinct improvement (deterioration) by
dynamical downscaling using a common threshold of ±0.05.

Temp Skill Added value

b0 MSESS ACC CB MSESS ACC CB

BI 0.75 0.90 0.15 −0.04 −0.02 −0.02
FR 0.66 0.89 0.34 –0.12 –0.05 −0.04
ME 0.56 0.80 0.23 –0.11 –0.05 –0.05
AL 0.57 0.82 0.10 –0.05 −0.04 0.02
IP 0.50 0.76 0.22 0.01 0.03 –0.08
MD 0.42 0.75 –0.04 0.01 −0.02 0.05
EA 0.45 0.72 –0.16 0.05 0.00 0.11
SC 0.02 0.45 –0.36 0.20 0.07 0.16
EU 0.35 0.67 –0.09 0.05 0.01 0.09

Temp Skill Added value

b1 MSESS ACC CB MSESS ACC CB

BI 0.34 0.64 0.25 0.12 0.15 –0.07
FR 0.63 0.87 0.34 −0.03 −0.01 −0.01
ME 0.51 0.75 0.19 −0.03 −0.02 −0.02
AL 0.68 0.89 0.04 −0.03 −0.01 0.06
IP 0.62 0.83 0.20 −0.01 0.01 −0.03
MD 0.52 0.82 –0.09 0.08 −0.01 0.07
EA 0.37 0.66 –0.20 0.05 −0.04 0.15
SC 0.24 0.56 –0.18 −0.03 −0.03 –0.09
EU 0.40 0.69 –0.05 0.01 −0.01 0.01

gional model over large parts of northwest Europe in the
baseline0 ensemble (see also Table 1).

Again, rather patchy MSESS fields are obtained for pre-
cipitation. Nevertheless, there are several regions with sig-
nificantly improved prediction skills in the CCLM ensembles
compared to MPI_b0 and MPI_b1 (Fig. 4c and d). For exam-
ple, both CCLM_b0 and CCLM_b1 reveal significant posi-
tive MSESS over eastern Germany and over parts of Scandi-
navia.

The added value of downscaling is most pronounced for
wind in CCLM_b0 (Fig. 4e). Significant improvements of
the MSESS are detected for southeast Europe, Italy, Scandi-
navia, and for coastal areas of Iberia, France, and England.
Areas with an added value of downscaling are also exis-
tent in CCLM_b1 (Fig. 4f), but visibly reduced compared
to CCLM_b0.

In Tables 1–3 we summarize the analysis of skill
(cf. Fig. 2) and added value (cf. Fig. 4) of the regional hind-
casts compared to the climatology for the three variables as
spatial means over the PRUDENCE regions (cf. Fig. 1). The
tables display the MSESS as well as its components correla-

Table 2. As Table 1, but for precipitation.

Prec Skill Added value

b0 MSESS ACC CB MSESS ACC CB

BI –0.17 –0.04 –0.39 –0.09 –0.09 –0.13
FR –0.64 –0.55 –0.87 0.07 0.09 0.01
ME –0.49 –0.31 –0.72 0.18 0.26 0.18
AL –0.27 –0.10 –0.46 –0.14 −0.04 –0.19
IP 0.12 0.41 0.06 0.05 0.17 0.12
MD –0.08 0.20 −0.25 –0.13 –0.07 –0.16
EA –0.28 0.02 –0.45 –0.05 –0.09 –0.05
SC –0.06 0.16 −0.27 0.02 −0.01 0.05
EU –0.17 0.06 –0.35 0.00 0.01 0.01

Prec Skill Added value

b1 MSESS ACC CB MSESS ACC CB

BI 0.07 0.21 –0.04 0.01 0.01 −0.01
FR 0.21 0.51 –0.04 0.04 0.05 −0.02
ME 0.20 0.54 0.01 0.16 0.20 0.01
AL –0.01 0.19 –0.11 –0.06 –0.05 –0.11
IP –0.09 0.12 –0.20 –0.15 –0.13 –0.16
MD 0.05 0.29 –0.13 0.03 0.03 −0.02
EA –0.11 0.05 –0.32 0.05 −0.01 0.03
SC 0.06 0.41 –0.17 0.00 0.05 0.04
EU 0.03 0.28 –0.16 0.02 0.02 0.00

Table 3. As Table 1, but for wind speed.

Wind Skill Added value

b0 MSESS ACC CB MSESS ACC CB

BI 0.21 0.50 0.19 0.23 0.09 –0.12
FR –0.77 –0.63 –0.88 0.09 −0.04 0.06
ME –0.22 –0.04 –0.34 0.23 0.13 0.23
AL –0.69 –0.45 –0.81 0.07 0.06 0.03
IP –0.36 –0.08 –0.52 0.26 0.17 0.18
MD 0.06 0.38 –0.10 0.12 0.02 0.18
EA –0.46 –0.21 –0.59 0.36 0.10 0.31
SC 0.19 0.50 0.17 0.16 0.09 0.02
EU –0.11 0.16 –0.20 0.15 0.07 0.21

Wind Skill Added value

b1 MSESS ACC CB MSESS ACC CB

BI –0.35 –0.57 –0.80 0.02 –0.09 −0.01
FR –0.01 0.28 −0.22 0.00 0.07 –0.05
ME –0.12 –0.06 –0.38 –0.24 –0.41 –0.29
AL –0.14 0.32 –0.30 –0.30 –0.13 –0.22
IP 0.05 0.29 –0.17 0.19 0.21 0.18
MD 0.07 0.41 –0.06 0.02 0.05 −0.03
EA –0.38 –0.23 –0.69 –0.09 –0.07 –0.21
SC –0.37 –0.34 –0.67 0.06 –0.05 0.02
EU –0.23 –0.11 –0.50 0.00 −0.02 −0.04

tion (ACC) and conditional bias (CB), according to the Mur-
phy decomposition (cf. Sect. 3.2). The formatting of the cells
in the left half of the tables display distinctly positive (bold
numbers), negative (italic numbers), or slightly positive skill
(no formatting) derived from the results shown in Fig. 2 for
the MSESS. A common threshold for all three variables is
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chosen in a way that above this level a skill score is regarded
as significant by the bootstrapping procedure. The thresholds
for the formatting are above (bold) or below (italic) ±0.3 for
the MSESS, and ±0.4 for ACC. Since the optimal value for
the conditional bias is zero, a low CB is depicted for the ab-
solute value, |CB|, being below 0.2 (bold), and a high CB
for |CB| being larger than 0.3 (italic). The formatting for
the added value in the right half of the tables corresponds to
the sign of the skill difference (dynamical downscaled minus
global MPI; bold: distinctly positive; italic: distinctly nega-
tive) in a region. The threshold is 5 % (±0.05) and chosen in
an analogous way to the left half of the tables.

For temperature (Table 1), the MSESS and ACC are high
in all regions except Scandinavia (SC). The correlation is
above 0.8 in CCLM_b0 for the northwestern part of Eu-
rope – namely the British Isles (BI), France (FR), Mid-
Europe (ME), and the Alps (AL). For CCLM_b1 the high-
est correlation is found more in the southern part of the re-
gion, namely in France (FR), the Iberian Peninsula (IP), the
Alps (AL), and the Mediterranean (MD). The CB is low
for most areas, except France (FR) and Scandinavia (SC) in
CCLM_b0. The MSESS is high due to the high ACC and
the low CB. MSESS and ACC are higher and CB lower
for b1 than for b0 over the whole of Europe (EU). A signif-
icant added value of the regionalization of baseline0 occurs
for Scandinavia (SC) and Eastern Europe (EA) as well as
for Europe (EU). In these regions CB is significantly lower
for CCLM compared to the MPI-ESM hindcasts. CCLM_b1
shows an added value for the regions British Isles (BI), the
Mediterranean (MD) and Eastern Europe (EA) as well as
over the entire domain (EU). The main cause is again a re-
duced conditional bias.

The MSESS for precipitation (Table 2) is much lower than
for temperature. It is mostly negative for CCLM_b0 and
only slightly positive for some regions in CCLM_b1. For
CCLM_b0 a significant positive correlation is only found for
the Iberian Peninsula (IP). The CB is generally negative (ex-
cept for IP), which is inherited from the global hindcasts,
since for MPI_b0 CB is even lower than for CCLM_b0. Over
the whole domain the added value is low and not significant.
For CCLM_b1, a positive ACC is uncovered for France (FR),
Mid-Europe (ME) and Scandinavia (SC). The conditional
bias is much lower than for CCLM_b0 and only slightly neg-
ative in most areas. An added value in relation to MPI_b1
occurs in those regions where ACC of CCLM_b1 is positive.
There is also an added value for the whole domain (EU), but
it is only significant for ACC.

The highest ACC for the 10 m wind speed is revealed
for northern Europe (BI and SC) as well as in the Mediter-
ranean (MD) for CCLM_b0, and in the southern regions for
CCLM_b1 (Table 3). These are all regions with low to mod-
erate conditional bias. CB is strongly negative in regions with
a low skill. Interestingly, the added value for the MSESS of
CCLM_b0 is significant in all regions, and for most regions a
significant improvement is also visible with respect to ACC

and CB. For CCLM_b1, on the other hand, significant im-
provements of MSESS and ACC compared to MPI_b1 are
only found for a few regions.

We conclude that regional downscaling may indeed pro-
vide an added value for decadal predictions over Europe,
both for individual grid points as well as for spatial means.
However, this added value is not systematic but depends on
variable and region.

4.3 How does the regional decadal predictive skill
depend on the ensemble size?

Past studies suggest that the ensemble size of a predic-
tion system has an impact on the forecast skill of a model
(Richardson, 2001; Ferro et al., 2008). Generally, there is
a consensus that the prediction skill for both seasonal and
decadal predictions is enhanced when the number of ensem-
ble members is increased. Kadow et al. (2015) analysed the
global MiKlip baseline1 generation and concluded that the
forecast accuracy for surface temperature for lead years 1
and 2–9 is improved for nearly the whole globe when the
ensemble size is increased from 3 to 10 members. This is in
line with the findings of Sienz et al. (2016) who examined
the prediction skill for North Atlantic sea surface tempera-
tures in the same hindcast ensemble. Also for seasonal pre-
dictions of the North Atlantic Oscillation a forecast system
profits from increasing size (e.g. Scaife et al., 2014). How-
ever, the ensemble-size-dependent skill bias has never been
demonstrated based on regional decadal climate predictions
before. With this aim, we analyse the impact of the ensem-
ble size on the predictive skill for the eight PRUDENCE re-
gions in Europe in both the regional and the global MiK-
lip ensembles. In the following, results are only shown for
the Iberian Peninsula (IP), as the findings are similar for the
other PRUDENCE regions. Figure 5 exhibits the dependency
of MSESS and delta_ACC when compared to the histori-
cal simulations for lead years 1–5 (y axis) on the ensem-
ble size (x axis) for all three variables spatially averaged
over IP. For each ensemble size n (n varying between 2
and 10), the solid coloured lines depict the averaged skill
scores for all permutations of n-member ensemble combi-
nations for each of the four individual hindcast ensembles
(MPI_b0, MPI_b1, CCLM_b0, and CCLM_b1). Note that
for the reference dataset always the full ensemble of 10 mem-
bers of the uninitialized historical runs is used, independently
of the ensemble size of the initialized hindcasts.

As expected, enhanced predictive skill can be observed
when the number of members is increased stepwise for both
the global and the regional hindcast ensembles. MSESS
shows a rather logarithmic relationship with increasing n,
depicting the highest skill scores for the 10 member ensem-
bles for all three variables (Fig. 5a–c). On the other hand, the
lowest skill scores are always found for the 2-member en-
sembles. This ensemble size dependency of MSESS is sys-
tematic and is detected in both hindcast generations for all
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Figure 5. Skill scores for the multi-annual mean anomalies of lead years 1–5 of the CCLM_b0 (red), MPI_b0 (yellow), CCLM_b1 (blue),
and MPI_b1 (green) ensembles depending on the ensemble size (x axis, ranging from 2 to 10 members) over IP (cf. Fig. 1). MSESS for
(a) temperature, (b) precipitation, and (c) wind speed; delta_ACC for (d) temperature, (e) precipitation, and (f) wind speed. In (d)–(f) box
and whisker plots for the skill scores of all n-member combinations are shown to indicate the uncertainty due to the ensemble size. For
MSESS and delta_ACC we have used the uninitialized historical ensemble as reference dataset. Note the different scaling of the y axis. For
details, please refer to the main text.

variables over all eight PRUDENCE regions (not shown), re-
gardless of whether the skill scores are negative or positive.
In some cases, the ensemble size increase even leads to a
shift from negative MSESS values to positive values in one
or more of the ensembles (e.g. Fig. 5a and c). In contrast, no
systematic conclusion can be stated for the delta_ACC, as the
ensemble size dependency of the predictive skill depends on
the variable and the considered MiKlip ensemble (Fig. 5d–f).
Nevertheless, there are also examples for delta_ACC where
the ensemble size dependency is similar to that of MSESS,
e.g. for temperature (Fig. 5d). These results suggest that a
regional decadal prediction system generally benefits from
larger ensemble sizes, either in terms of more skilful decadal
forecasts or at least of a reduction of the bias or the uncer-
tainty, depending on the variable and the hindcast generation.
Note that for most variables and skill scores the hindcast gen-
eration is more important for the skill than the resolution. In
addition, most diagrams indicate an added value of down-
scaling. For temperature and wind speed, both generations of
CCLM surpass their MPI counterparts for both skill scores,
indicating a systematic added value of downscaling. This is
particularly visible for wind in the b0 ensemble, where the
prediction skill of CCLM is distinctly better than for MPI-
ESM-LR (Fig. 5c and f). This is mainly due to higher skill
scores over orographic structured terrains of IP in CLM_b0
compared to MPI_b0 (cf. Fig. 4).

For ensembles with less than 10 members, the skill scores
of all possible n-member ensemble combinations are av-
eraged. For selected ensembles, box and whisker plots of
these n-member combinations are shown for delta_ACC in
Fig. 5d–f. Given that we are doing permutations without re-
placement, the spread between the individual n-member en-
sembles declines with an increasing number of members n,
and this decline should therefore not be over-interpreted.
Nevertheless, the spread is quite large not only for small
ensemble sizes but also for ensembles with n > 5. For in-
stance, delta_ACC for wind in CCLM_b0 (MPI_b0) varies
between 0 and +1.6 (−0.1 and +1.1) for the 2-member en-
sembles (Fig. 5f). Even for the 7-member ensemble, results
can differ quite strongly depending on the selection of the
ensemble members. Similar results are found for temperature
and precipitation. These findings clearly demonstrate the ne-
cessity of using large ensembles to reduce uncertainties. Fur-
thermore, only for high numbers of ensemble members (eight
or more), the delta_ACC curve for CCLM_b0 is above the
range of uncertainty in MPI_b0 in the case of precipitation
(Fig. 5e) and wind (Fig. 5f). This indicates that the predic-
tion skill may only be significantly improved when the whole
ensemble is dynamically downscaled. The same applies for
the improvement from baseline0 to baseline1 in the case of
temperature (Fig. 5d).

In summary, our findings confirm what is already verified
in recent studies for global decadal predictions: the predic-
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tive skill of a regional decadal prediction system is generally
improved when the size of the hindcast ensembles increases.
This is valid for all variables, regions, and hindcast ensem-
bles considered in this study. The skill scores converge to-
wards a certain value in most cases for MSESS in all hind-
casts (see Fig. 5a–c). The increments in added value by in-
creasing the number of ensemble members decrease for more
than 5 members. Nevertheless, it is recommended to use 10
members or more for the skill assessment of decadal predic-
tions on the regional scale, as is also endorsed in the Decadal
Climate Prediction Project (DCPP) contribution to CMIP6
(Boer et al., 2016).

4.4 How does the number of initializations affect the skill
estimates?

A lesson learned from the CMIP5 decadal experiments is that
more starting years and thus a larger number of initializations
is beneficial to establish robust skill estimates (Boer et al.,
2016). This has been reflected in the progress from the first
global MiKlip hindcast generation baseline0 to the second
generation baseline1. Whereas baseline0 provides 10 ensem-
ble members every fifth year (compliant with the CMIP5 ex-
perimental protocol), baseline1 provides this ensemble size
for each starting year of the hindcast period. To assess the
impact of using only five initializations (as used elsewhere
in the paper) on the robustness of our main conclusions we
performed a sensitivity analysis with the global baseline1 en-
semble, for which all starting years are available. For this, we
compared the sample with ten-yearly starting dates with the
full yearly initialized MPI-ESM-LR baseline1 ensemble over
the same period from 1960 to 2000.

Figure 6 presents a comparison between the ACC scores
for the sample with five initializations (Fig. 6a, c, e) and the
sample with all 41 initializations (Fig. 6b, d, f). For all three
variables the score maps show in general comparable spatial
distributions. The skill maps for the sample with all initial-
izations usually depict a smoother spatial distribution with
less extreme skill values and larger areas with significant skill
scores. The regional averages over most of the PRUDENCE
regions are comparable. However, in some regions larger dif-
ferences can occur: for temperature over Ireland and Scot-
land, for precipitation over parts of France and eastern Eu-
rope, and for wind from northeastern Spain towards the Alps.
Similar results are found for MSESS (not shown) for which
not only the number of initializations of MPI_b1 is increased
but also the number of uninitialized historical runs.

It is obvious that more initializations increase the robust-
ness of the skill assessment, especially with respect to quan-
titative estimates and significance of the results. Therefore,
this work supports the recommendations made for CMIP6 by
Boer et al. (2016) to generate hindcast ensembles with yearly
starting dates. Nevertheless, using only five initializations al-
ready represents the general features and to some extent the
significance of the regional distribution. Therefore, the anal-

ysis of the sample with all initializations confirms the quali-
tative findings from Sect. 4.1. The results regarding the added
value and the ensemble size dependence are less affected by
the number of initializations. Given the above findings, we
conclude that the results obtained here for a limited num-
ber of initializations qualitatively comparable to those which
would be obtained for samples with distinctly more initial-
izations.

5 Summary and discussion

In this study, the decadal prediction skill of the regional MiK-
lip decadal prediction system is analysed for temperature,
precipitation, and wind speed over Europe and compared to
the forecast skill of the global ensemble. The goal is to assess
the prospect of such a system for the application in forecasts
on decadal timescales. Focus is given to years 1–5 after ini-
tialization. Two skill scores are used to quantify the accuracy
of the two different MiKlip hindcast generations. The main
findings of our study can be summarized as follows:

– There is a potential for regional decadal predictability
over Europe for temperature, precipitation, and wind
speed in the MiKlip system, but the predictive skill de-
pends on the variable, the region, and the hindcast gen-
eration.

– The MiKlip prediction system may distinctly benefit
from regional downscaling. An added value in terms
of accuracy and to some extend significance of skill
is particularly revealed for temperature over the British
Isles (BI), Scandinavia (SC), the Iberian Peninsula (IP);
and for precipitation over the British Isles (BI), Scandi-
navia (SC), Mid-Europe (ME), and France (FR) for the
b1 generation. Most of these regions are characterized
by complex coastlines and orography, which indicates
that the better representation of topographic structures
in the regionalized hindcasts may improve the predic-
tive skill.

– The improvement of the initialization procedure from
baseline0 to baseline1 as described in Pohlmann et
al. (2013b) increases the overall predictive skill in the
downscaled MiKlip hindcasts over Europe, at least for
precipitation and temperature. However, improvement
of the skill varies between variable and region. The skill
for temperature increases around the Mediterranean Sea
and parts of Scandinavia from b0 to b1. For precipita-
tion the skill of b1 compared to b0 is higher in all re-
gions except the Iberian Peninsula and eastern Europe.
Only for wind speed is there mostly no benefit from the
improved initialization.

– A systematic enhancement of MSESS skill scores with
increasing ensemble size, as revealed in numerous stud-
ies for global predictions, is also found for the regional
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Figure 6. Spatial distribution of the ACC for the multi-annual mean anomalies of lead years 1–5 in MPI_b1 for (a, b) temperature, (c, d) pre-
cipitation, and (e, f) wind speed. For (a, c, e) five start years (dec1960, dec1970, dec1980, dec1990, dec2000) have been used, while
for (b, d, f) all start years from dec1960 to dec2000 are taken into account. The black dots indicate significant skill at the 95 % level
(bootstrapping). For more details see the main text.

MiKlip decadal predictions system, and 10 members is
found to be suitable for regional decadal forecasts. This
is valid for all variables and European regions.

– Based on the MPI_b1 data, it was shown that results
derived from only five initializations used in this study
qualitatively agree with results based on the full set
of annual initializations. Nevertheless, such an increase

would improve the robustness and significance of the
skill maps.

Müller et al. (2012) and Pohlmann et al. (2013b) found sys-
tematic prediction skills for surface temperature over large
parts of the North Atlantic and Europe in both global genera-
tions (baseline0, baseline1). From the results of our study, it
is apparent that the Mediterranean area and the Iberian Penin-
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sula seem to be key European regions for decadal prediction
skill with the regional prediction system. This is in line with
findings from Guemas et al. (2015) and may be related to
skilful predictions of the Atlantic Multi-decadal Oscillation
(AMO; Garcia-Serrano et al., 2012; Guemas et al., 2015).
Due to the rather non-linear relationship of these large-scale
North Atlantic features to regional atmospheric conditions
over Europe, the mechanisms steering the decadal variability
and predictability of climate variables in European regions
are thus more complex. The decadal variability in regional
precipitation, temperature, and wind speed over most parts of
Europe is largely affected by the North Atlantic Oscillation,
but its skilful decadal predictability over the continent is still
under debate. With respect to this, a better understanding of
the mechanisms relevant for the regional climate over Europe
on the decadal timescale is required, as was, for example, ob-
tained for the tropical Atlantic (Dunstone et al., 2011). This
is an objective of the ongoing second phase of the MiKlip
project.

The skill scores may strongly vary between neighbouring
grid points. Comparable results were found by Guemas et
al. (2015), who detected a rather diffuse pattern for the ac-
curacy of decadal predictions over Europe for seasonal tem-
perature and precipitation. This might at least partly be due
to spatial and temporal inhomogeneity of the gridded obser-
vational references. A more realistic assessment of the pre-
diction skill can be made by considering spatial means (God-
dard et al., 2013), which was mostly considered in this study.
In line with Kadow et al. (2015), we could show that an en-
largement of the ensemble size up to 10 members results in
an improvement of the prediction skill over Europe. How-
ever, prediction skill could further benefit from even larger
ensemble sizes, especially in areas with low signal-to-noise
ratio (cf. Sienz et al., 2016).

Bias and drift adjustment (e.g. Boer et al., 2016) provides
prospect in skill improvement not only for GCMs but also
for RCMs. This is particularly the case for ensemble simu-
lations run with full-field initialization (like the third MiK-
lip generation prototype, not analysed here; cf. Marotzke et
al., 2016). While bias and drift adjustment methods have im-
proved the forecast skill of near-term climate prediction (e.g.
Kruschke et al., 2016), the general expectation is that drift
correction is less important for prediction systems employ-
ing anomaly initializations like the baseline0 and baseline1
ensembles analysed here (Marotzke et al., 2016). Neverthe-
less, bias correction and calibration are an important topic in
the second phase of MiKlip.

Due to the high computational costs of dynamical down-
scaling, only five initializations (one per decade) are avail-
able for the regional MiKlip ensemble (see Sect. 2). This
is a shortcoming regarding the statistical significance of the
results and some of the statements presented in this study.
However, we could show that the qualitative findings are only
partly influenced by the limited number of available hind-
casts and that the main conclusions can be regarded as ro-

bust. The statistical significance will be easier to quantify
when the regional simulations for the newest MiKlip ensem-
ble generation are available with annual starting dates over
more than 50 years. On the other hand, regional decadal fore-
casts may have advantages beyond the examples discussed
in this paper. For example, RCMs enable the integration of
improved components of the hydrological cycle or climate-
system components with memory on multi-year timescales
like soil moisture (Khodayar et al., 2014; Sein et al., 2015).
Kothe et al. (2016) has shown that extracting the initial state
of the deep soil in the RCMs from regional data assimilation
schemes may improve decadal predictions. Further, Akhtar et
al. (2017) demonstrated that the regional feedback between
large water bodies and the atmosphere play a major in the re-
gional climate system. This feedback can only be captured in
regionalized climate predictions by a dynamic RCM–ocean
coupling. Most of the approaches mentioned above are on-
going within the second phase of MiKlip and are expected
to enhance the decadal prediction skill over Europe. We thus
conclude that a decadal prediction system would clearly ben-
efit from a regional forecast ensemble.

The regional decadal prediction system generated by the
MiKlip consortium comprises altogether 1000 years (two
hindcast generations, each of them comprising 10 hindcast
members for five starting years) of simulations with 0.22◦

for the entire EURO-CORDEX region, which is, to our best
knowledge, unprecedented. Hence, this ensemble enabled
us to gain important insights into different aspects and the
prospects of regional downscaling for decadal predictions,
and serve as a good basis for future studies. In the ongo-
ing second phase of MiKlip it is planned to downscale a
complete ensemble hindcast generation with 10 members
for more than 50 starting years, giving altogether more than
5000 years. These regional hindcast ensembles provide a
valuable dataset beyond decadal predictions, as they com-
prise multiple realizations of the present-day climate in com-
parably high resolution, which can for instance be used to
determine more robust return periods for extreme events.
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